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ABSTRACT 

This research examines the effectiveness of resupply systems in humanitarian 

assistance and disaster relief (HADR) operations by exploring different permutations of 

operational energy (OE)-focused assets and policies that a Marine Expeditionary Unit 

(MEU) employs to improve its throughput of resources to disaster victims. The basis for 

the modeled scenario is the support provided by the 31st MEU to the city of Hachinohe 

as part of Operation TOMODACHI. This thesis focuses on OE and only considers the 

medium tactical vehicle replacement (MTVR) as the baseline capability. An agent-based 

simulation is then used to model the effectiveness of OE-focused resupply strategies and 

capabilities. These options include (1) efficient driving techniques, (2) reducing idling 

time, (3) hybrid technologies, and (4) follower vehicles. To investigate their 

effectiveness, this research uses a design of experiments approach to efficiently examine 

a set of design factors for specified operational plans. Statistical results indicate that the 

operational plans employing shorter and quicker vehicle convoys that communicate with 

one another are most effective in resupplying isolated victims. This research also 

confirms that the employment of OE-focused assets and policies is effective in increasing 

timeliness of resupply. Taken together, these factors contribute toward increasing the 

operational reach of a MEU conducting HADR resupply. 
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EXECUTIVE SUMMARY 

Given the increased frequency and scale of natural and manmade disasters, 

militaries around the world have also been increasingly deployed in humanitarian 

assistance and disaster relief (HADR) operations due to their diverse range of logistics 

and medical equipment as well as their ability to deploy rapidly. Military units may not 

be ideally structured to respond to disasters, however; their effectiveness may also be 

limited by the operational reach of the delivery units and assets that they employ. The 

purpose of this research is to gain insights into the feasible operational energy (OE)-

focused capabilities, tactics, techniques, and procedures (TTP) that a Marine 

expeditionary unit (MEU) may employ in order to extend its operational reach in the 

context of a HADR resupply operation. This thesis identifies the considerations and risks 

that a MEU commander may take into account in planning for a HADR resupply 

operation. 

This thesis utilizes a large-scale design of experiments (DOE) applied to an agent-

based simulation tool called the map-aware, non-uniform automata (MANA) to 

investigate the effectiveness of OE technologies and concepts (e.g., efficient driving 

techniques, hybrid technologies, and follower vehicles) in allowing the MEU to search 

for and resupply as many isolated victims as possible in a HADR scenario. This summary 

provides an overview of (1) HADR operations, (2) the model operating scenario used in 

this thesis, (3) the research methodology, and (4) the analytical results. The research in 

this thesis is aimed at guiding the implementation of OE-focused assets in HADR 

operations. In doing so, this research addresses the following questions:  

1. What is the effectiveness of current MEU assets supporting HADR 
resupply operations in terms of throughput of resources? 

2. How do the energy requirements of current MEU assets supporting HADR 
resupply operations limit the capability to maximize delivery of resources 
to disaster areas? 

3. How do OE considerations influence the resupply options of a MEU 
conducting HADR resupply operations? 



 xx

4. What OE-focused assets and behaviors should a MEU include in its 
resupply system to improve its throughput of resources to disaster areas? 

The Expeditionary Energy Office (E2O) is interested in understanding energy-

based risk and the extent to which energy demand impacts operational capabilities 

(Marine Corps Expeditionary Energy Office 2016). This involves an analysis of current 

capabilities in meeting mission requirements, as well as the employment of enhanced 

OE-focused assets and TTPs in extending operational reach. Metrics obtained from this 

research will help E2O to develop a better understanding of the energy demand and 

organic logistic capabilities of a MEU conducting resupply operations to isolated victims 

in a HADR scenario.  

This research focuses on the support provided by the 31st MEU to the city of 

Hachinohe as part of Operation TOMODACHI, using it as the operational scenario in this 

study. In particular, this thesis studies the land-based resupply operations to assist 

isolated victims. The concealment and positioning of the isolated victims influence the 

logistical demand on the MEU. To answer the research questions, three measures of 

effectiveness (MOEs) are identified: (1) throughput of relief supplies to isolated victims, 

(2) timeliness in delivering relief supplies to isolated victims, and (3) fuel efficiency of 

each capability instantiation. These MOEs are quantifiable and relevant to the research 

topic and are direct measurements of the success of a HADR resupply operation.  

The operational scenario is incorporated in MANA, and the resulting MANA 

model mimics the interactions between local distribution centers (LDCs), dynamic 

distribution teams (DDTs), and isolated victims. These interactions provide insights into 

the efficiency and effectiveness of the resupply capabilities of the MEU. A snapshot of 

the MANA simulation model is shown in Figure 1, with LDCs in blue “plus” icons, 

DDTs in blue truck icons, and isolated victims in red human icons. 
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Figure 1. Snapshot of the MANA Simulation Model. Adapted from Google Maps. 

A design of experiment (DOE) approach is used to explore extensively the 

problem space in a systematic and efficient manner. In particular, the nearly orthogonal-

and-balanced (NOB) design technique was utilized to generate a 256-design-point matrix 

for the eight design factors used in this thesis. Decision factors used were: (1) operational 

plan, (2) reduce idle time, (3) fuel efficiency, and (4) communication devices. Noise 

factors used were concealment and trafficability.  

This study utilized both arithmetic calculations and two phases of 

experimentation. Mathematical calculations were first performed to obtain several 

analytical solutions in order to determine the plausibility of the simulation results. The 

first phase of experimentation utilized 40 replications per design point to quickly screen 
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out dominant factors, while the second phase of experimentation utilized 100 replications 

per design point to generate data for subsequent analysis. Data farming techniques were 

used to vary the input parameters in a systematic manner throughout the simulation runs. 

The resulting data sets were then analyzed statistically to reveal any interesting patterns, 

clusters, or outliers from the interactions between the design factors in the simulation. 

The analyzed results of this thesis provide the E2O insights into which OE-

focused assets or policies contribute most toward the effective delivery of relief supplies 

to disaster victims, and help guide the E2O in the implementation of OE-focused assets in 

HADR operations. Specific findings from this study include: (1) fuel allocated to the 

ground combat element (GCE) of the MEU may not be sufficient to support the energy 

requirements of the fleet of MTVRs in conducting HADR ground resupply operations; 

MEU commanders may have to reallocate fuel designated for other elements, such as the 

air combat element (ACE) or the MEU service support group (MSSG) to support the 

HADR resupply operation, and (2) choice of operational plan and use of communication 

devices greatly influence the throughput of relief supplies. In terms of OE-focused assets 

and policies, this research confirms the employment of: (1) trained drivers, (2) hybrid 

technologies, and (3) follower vehicle technologies as the most effective measures toward 

increasing timeliness in delivering relief supplies. Taken together, these factors contribute 

toward increasing the operational reach of a MEU conducting HADR resupply operations 

in terms of number of victims resupplied and time taken to resupply victims. 
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I. INTRODUCTION 

A. PURPOSE 

This study provides the United States Marine Corps (USMC) with insights about 

alternate options for incorporating operational energy (OE)-focused assets to improve its 

baseline resupply configuration in certain scenarios. Operational energy is defined as “the 

energy required for training, moving, and sustaining military forces and weapon 

platforms for military operations” (USMC Expeditionary Energy Office 2011, 18). The 

result of this study will provide insights into the employment of new technologies and 

concepts in OE such as efficient driving techniques, hybrid technology, and autonomous 

vehicles, in enhancing resupply operations in humanitarian assistance and disaster relief 

(HADR) scenarios. This thesis also explores how a Marine expeditionary unit (MEU) 

may develop and employ an appropriate concept of operations (CONOPS) to allocate its 

resources more effectively and optimize its operations.  

B. BACKGROUND AND MOTIVATION 

With natural and manmade disasters increasing both in frequency and in scale, 

there is a greater demand for militaries to provide HADR (McMillen 2007). Militaries are 

not ideally structured to respond to disasters, however. While most conventional military 

operations are conducted only after detailed planning and usually during a period of 

heightened tensions, disasters can happen at any time or place. Military doctrine for 

HADR operations is not yet fully formed; deliverables of the mission, scope of 

operations, and coordination with or transition to civilian organizations are mainly ad 

hoc. The inherent complexity of HADR operations is also increased with the involvement 

of non-military organizations (Greenfield and Ingram 2011). Lastly, the effectiveness of a 

MEU supporting HADR operations is limited by the operational reach of the delivery 

units and the assets that it employs, as the supplies carried by the MEU may not 

specifically be configured for HADR missions (Webb 2006). To this end, commanders 

believe that the limitation of operational reach can be alleviated with OE-focused assets 
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and behaviors (Department of Defense 2016, 15). Here, we define OE-focused assets and 

behaviors as those designed to reduce energy usage or self-generate power.  

In the systems engineering (SE) process, the need to extend operational reach 

translates to a stakeholder requirement that must be addressed. In the context of HADR 

missions, militaries are essentially conducting logistics operations (Greenfield and 

Ingram 2011); HADR operations frequently involve the distribution of aid and supplies, 

transportation of relief workers and disaster victims, construction of temporary shelters, 

and administration of medical treatment. Hence, there is a need to study if and how the 

implementation of OE-focused assets and behaviors is able to improve the operational 

reach of a resupply system for HADR operations. This thesis will attempt to answer the 

main research question: Given a HADR operation, how should a MEU engineer its 

resupply system to render aid to disaster-struck locations more effectively?  

C. SURVEY OF RECENT STUDIES 

A survey of past studies on energy consumption during military operations, and 

analysis of various HADR operations, provided the academic context to this thesis’ focus 

on the implementation of OE-focused assets and behaviors in supporting HADR 

operations. 

Besser et al. (2013) examined methods to reduce the logistical footprint of a MEU 

(e.g., fuel usage, manpower, and amphibious systems) to maximize the delivery of water 

and other supplies during HADR operations. Indeed, their results showed that significant 

improvements were possible through the local production of water and the use of 

autonomous vehicles. In addition, the employment of hybrid and follower vehicles also 

showed some potential to reduce fuel usage in certain mission areas, subject to certain 

constraints (Besser et al. 2013). 

Peters (2016) identified behavioral trends that can be changed through “training 

and education, policy and planning, and leadership and communication, to improve 

individual and organizational awareness of the importance of efficient and effective 

energy use,” in order to achieve energy savings (Peters 2016, xvi). Hill and Simoncini 
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(2015) also investigated the costs of vehicle idling in the military, and concluded that 

huge savings of over $40M could be achieved by reducing vehicle idling time. In 

particular, there are opportunities to achieve increased operational reach, among others, 

through the improved use of generators, environmental control units, and vehicles. 

Alexander et al. (2011) employed an SE methodology to explore the 

“requirements to provide assistance in the form of goods and services” (Alexander et al. 

2011, vii) in the immediate 60 days of a flooding disaster to a fictional country in Africa. 

The scope of the study included constructing and analyzing alternate architectures in 

order to investigate the effectiveness of a sea-based aid distribution point, and to “better 

understand and possibly improve upon the delivery tactics and methods of delivery 

associated with HADR operations” (Alexander et al. 2011, 153). 

In the domain of modeling and simulation, Hinkson (2010) developed a map-

aware non-uniform automata (MANA) simulation model to “evaluate the logistical 

impact of enhanced company operations on a MEU” (Hinkson 2010, v). This research 

utilized a design of experiment technique called the “nearly orthogonal Latin hypercube 

(NOLH) to vary a set of design factors in an efficient manner” (Hinkson 2010, v). The 

use of MANA and the NOLH design can also be modified to explore the resupply system 

of a MEU supporting HADR operations. Similarly, Besser et al. (2013) and Alexander et 

al. (2011) constructed simulation models using ExtendSim and SimKit software to study 

the operational reach and throughput of resupply systems in HADR operations by varying 

the type/use of vehicles and other OE-focused assets. 

D. DEFINITION OF RESUPPLY SYSTEMS 

As the resupply system for a HADR operation may differ from the resupply 

system for other type of operations, it is necessary to define the logistical flow of relief 

supplies for a HADR operation. For such operations, relief supplies are gathered from 

international and regional sources, and they are sent to the affected country by air, sea, 

and ground transportation. In the affected country, these relief supplies are typically 

stored in depots for customs clearance and inspection before they are routed downstream 

to local distribution centers (LDCs), which are forward-positioned warehouses set up 
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closer to the scene of the disaster to provide more responsive resupply. From the LDCs, 

military forces and non-governmental organizations (NGOs) are usually charged with the 

allocation and distribution of relief supplies to their intended beneficiaries. Here, we 

focus our study of HADR operations on the “last mile” distribution of supplies from 

LDCs to disaster victims. In particular, this thesis considers a resupply system that 

utilizes military ground-based vehicles to distribute relief supplies stored in LDCs to 

victims who have been displaced and isolated by a disaster. A typical resupply system for 

large-scale HADR operations involving international and military actors is shown in 

Figure 1. We highlight the scope of this thesis in the red box, and define it in SE terms.  

 

Figure 1.  A Typical Resupply System for HADR Operations. 
Adapted from Balcik, Beamon and Smilowitz . 

Following the SE process, a system’s context diagram defines the boundaries of a 

system in order to distinguish it from the environment. According to Kossiakoff et al. 

(2011, 266), the objective of a systems context diagram is “to focus attention on external 

factors and events that should be considered in developing a complete set of system 

requirements and constraints”; it provides for a structured and systematic approach in 

defining the MEU resupply system to be studied in this thesis. The systems context 

diagram, using an input-output model, for a MEU resupply system is shown in Figure 2.  

External sources of inputs to the HADR resupply system include: (1) international 
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sources, (2) local and regional sources, (3) the DOD, and (4) the environment. 

International, local, and regional sources provide the necessary relief supplies to the 

MEU for distribution. The DOD gives the MEU its mission orders and stipulates the 

CONOPS that the MEU resupply system has to utilize. Lastly, the environment, which 

consists of destroyed or degraded roads and unpredictable weather, affects the manner in 

which the MEU operates and the assets that it may employ. In turn, the MEU resupply 

system affects: (1) disaster victims, and (2) the U.S. government. Firstly, disaster victims 

are direct recipients of the relief supplies distributed by the MEU resupply system. 

Secondly, the success or failure of the MEU resupply mission may affect the image of the 

U.S. as a country, or of the U.S. government. 

 

Figure 2.  Systems Context Diagram for a MEU Resupply System. 

E. TYPES OF DISTRIBUTION MODELS 

1. Direct Point-to-Point 

In this model, relief items are delivered from the donor country to the disaster 

victims directly. For urgent and unanticipated operations such as HADR, the advantage 

of a point-to-point method is that disaster victims may receive the relief supplies more 

quickly. The drawbacks are that a large amount of manpower is required to deliver all 

relief supplies individually to all disaster victims, and multiple trips may be necessary to 
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deliver different types of relief supplies if there is no sorting and packaging done prior to 

distribution, resulting in piecemeal delivery. 

2. Hub-and-Spoke 

In the hub-and-spoke model, relief items are delivered to one or several LDCs in 

the affected country. Different relief items are sorted and packaged at the LDCs before 

distribution to the disaster victims. Military forces and local NGOs will collect the relief 

supplies at these hubs and distribute them to the disaster victims. The advantage of the 

hub-and-spoke system is that it is more efficient, and disaster victims are able to receive 

different types of relief supplies simultaneously. The addition of an extra stop at the hub 

means that relief supplies will take more time to reach the disaster victims, however. The 

hub-and-spoke model will be adopted as the distribution model in this thesis. 

3. Push 

In the push distribution model, the MEU’s higher headquarters (HHQ) makes 

projections of what the disaster victims will require and delivers relief items based on 

those projections. Relief items are then distributed to or near the victims’ actual 

geographical location. From an OE-viewpoint, the push distribution model is more 

resource intensive for the military forces and local NGOs tasked with the distribution 

operation as it requires the transportation of relief items from the LDCs to the disaster 

victims. It may be a necessary strategy; however, as certain disaster victims may be 

immobile or would encounter great difficulty in moving to LDCs. The push distribution 

model is used in this thesis as the amount of relief items carried by each dynamic 

distribution team (DDT) convoy is based on the HHQ’s projection, rather than on actual 

demand. In addition, the relief supplies are delivered to or near the disaster victims. 

4. Pull 

In the pull distribution model, the MEU HHQ is responsible to track disaster 

victims’ demand of relief items and deliver based on actual demand. At the same time, 

disaster victims are required to collect relief supplies from the LDCs. As the only energy 

expended in this model is in the operation of the LDCs, it is also considered less resource 
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intensive. The pull distribution model may only be employed for small areas or in areas 

where mobility is not a concern, however; disaster victims may also be unable to 

communicate their demands directly with the MEU HHQ. Hence, the pull distribution 

model may not be practicable in most HADR operations. 

F. RESEARCH QUESTIONS 

By refining the identified areas of improvement, we restate the main research 

question: How should a MEU engineer its resupply system to render aid to disaster-struck 

locations more effectively? Specifically, this research will address the following 

questions:  

1. What is the effectiveness of current MEU assets supporting HADR 
resupply operations in terms of throughput of resources? 

2. How do the energy requirements of current MEU assets supporting HADR 
resupply operations limit its capability to maximize delivery of resources 
to disaster areas? 

3. How do OE considerations influence the resupply options of a MEU 
conducting HADR resupply operations? 

4. What OE-focused assets and policies should a MEU include in its 
resupply system to improve its throughput of resources to disaster areas? 

G. POTENTIAL AREAS OF IMPROVEMENT 

The military’s distribution capability in the form of airlift, sealift, and ground 

transportation are its most ready and relevant capabilities for employment in HADR 

missions (Webb 2006). Given that resupply requirements are ground-driven and demand-

generated with short response lead times, it is difficult to perform deliberate planning for 

resupply missions in a HADR scenario. As the destruction of critical infrastructure is a 

common occurrence in natural disasters, the MEU tasked with conducting HADR 

operations must be prepared to be self-reliant in terms of energy. In this thesis, a MEU is 

tasked with searching for and transporting HADR supplies from LDCs to victims who 

may have been geographically isolated by the disaster. The MEU commander is 

concerned with the ability to transport and distribute supplies to as many disaster victims 
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as possible, but must also consider the limited energy supplies that are available to the 

MEU; energy-efficient means must be explored and employed as far as reasonably 

practicable. Hence, the potential areas of improvement explored in this thesis are: 

1. Can the MEU locate isolated victims, and upon doing so, deliver adequate 
resupply to them? 

2. How much energy is required to carry out the resupply missions? 

3. How can the MEU be more energy-efficient in HADR operations? 

H. BENEFITS OF THE STUDY 

This study provides the Marine Corps with insights into alternate structures and 

CONOPS that incorporate OE-focused assets and policies that are better suited for 

HADR scenarios than its baseline configuration. The result of this study will form the 

basis for determining the feasibility of implementing OE-focused technologies and 

concepts such as smart power grid management, efficient driving techniques, and 

hybrid/autonomous vehicles, in enhancing resupply operations in HADR scenarios. This 

thesis considers how the MEU may develop and employ appropriate OE-focused 

assets/behaviors and CONOPS to allocate its resources more effectively and improve its 

efficacy in HADR operations. 

I. SCOPE OF STUDY 

This study is a modeling- and simulation-based systems engineering (MSBSE) 

effort that will provide insights into the impact of employing OE-focused assets and 

policies in HADR operations. The intent is not to provide quantitative judgement on the 

amount of improvement that can be achieved through the implementation of these OE-

focused assets and CONOPS. This study employs computer simulation to address topics 

that cannot be solved analytically, such as the uncertainties and randomness involved in 

HADR operations. The dispersal of victims, difficulty in locating victims, and influx of 

donated relief supplies are just some of the elements of HADR operations in which a 

MSBSE approach is useful. Additionally, simulation is ideal for obtaining insights and 

drawing inferences from new processes or procedures, such as the incorporation of OE-
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focused assets/behaviors and CONOPS in HADR operations to extend operational reach 

(P. J. Sanchez 2007).  

The first step in constructing the model is to define the system of interest (SOI) 

(P. J. Sanchez 2007). Wasson (2006, 81) defines SOI as “the system of a mission system 

and its support system(s) assigned to perform a specific organizational mission and 

accomplish performance-based objective(s) within a specified time frame.” As depicted 

in Chapter I, Section D, Figure 1, the SOI in this study is the resupply system of the 

MEU. The supporting systems include the LDCs, vehicle delivery systems, beneficiaries 

(disaster victims), and CONOPS used to employ the assets.  

The SOI relationship diagram of the resupply system of the MEU is depicted in 

Figure 3, which illustrates the different systems that are closely related and interact 

together in the context of the MEU resupply system. Thus, it is important that the design 

of any system in the MEU resupply system must consider all possible impacts that it will 

effect on other systems, as well as the possible impacts that other systems may have on it. 

These impacts may propagate horizontally to affect peer systems that share the same 

capabilities, or cascade vertically upward or downward to affect higher or subordinate 

systems. 

MEU Resupply 
System

LDCs
Vehicle Delivery 

Systems
Beneficiaries

(Disaster Victims)
CONOPS

Classes of 
Trucks

Classes of 
Helicopters

Mobile 
Victims

Isolated 
Victims

“Push” 
Concept

“Pull” 
Concept

Relief 
Supplies

Food / 
Supplies

Water

 

Figure 3.  SOI Relationship Diagram. 
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The first part of this thesis will utilize an SE process to identify the: (1) 

operational need, (2) system requirements, and (3) system functions of a resupply system 

in a HADR operation. From these, system alternatives will be generated through the 

addition of OE-focused assets and employment of different CONOPS; instantiations of 

feasible combinations shall be proposed. In the second part of this thesis, a constructed 

simulation model will be used to assess the OE performance of the proposed 

instantiations in order to provide insights into the potential tradeoffs, as well as generate 

data for the analysis and comparison of the various instantiations, to guide future 

implementation. To illustrate, the “Vee” model for the SE process is shown in Figure 4. 

The scope of this thesis will address the: (1) requirements and (2) design in the left-hand 

side of the “Vee” model; modeling and simulation techniques will be utilized to 

investigate the effectiveness of the detailed designs in meeting the stated requirements 

and architecture before the implementation phase, and can be considered to be a 

preliminary developmental test and evaluation (PDT&E) for the MEU resupply system. 

The results of the PDT&E will in turn provide insights that refine the design. 

 

Figure 4.  Systems Engineering “Vee” Model. Adapted from Defense 
Acquisition University. 
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The proposed OE-focused assets and policies that are used in this study were 

provided by the USMC Expeditionary Energy Office (E2O), Headquarters Marine Corps, 

and theses by Besser et al. (2013) and Peters (2016). These include the employment of 

efficient driving techniques, autonomous vehicles, and reducing idling time, among 

others. On the other hand, the proposed CONOPS were derived from varying: (1) the 

type of resupply model (e.g., push or pull) and (2) the flexibility that a resupply team is 

given to resupply disaster victims as compared to being compelled to stay on its assigned 

search and delivery route. Using these design factors, a design of experiments (DOE) 

approach is adopted to explore the experimental space and thereby understand the impact 

of the design factors on key measures of effectiveness (MOEs). 

This study focuses on the “last mile” resupply of relief supplies such as food, 

water, and comfort items from LDCs to isolated victims. As one of the aims of this study 

is to minimize the amount of OE used to fulfill HADR resupply demands, only ground-

based assets are considered in the following analysis, as they are more energy efficient 

than air assets (Besser et al. 2013). In addition, ground-based assets are also more 

feasible in responding to the relatively small operation area (100mi by 60mi) used in this 

study. Specific MOEs include: (1) the proportion of victims resupplied, (2) the time taken 

to resupply these victims, and (3) the total number of resupply trips. 

J. THESIS ORGANIZATION 

The remaining chapters in this thesis are organized in the following manner. 

Chapter II presents a review of the related academic studies that have been conducted 

regarding resupply systems in HADR operations. Chapter III details the operational 

scenario used in this study as well as the considerations and assumptions used in the 

development of the MANA simulation model. This model will be subsequently used to 

assess the effectiveness of different OE-focused instantiations. Chapter IV goes through 

the development of the MANA simulation model and the simulation runs. Chapter V 

presents the results and analysis of the simulation runs. Finally, Chapter VI provides the 

insights and recommendations for OE-focused assets or policies that contribute most 

toward the effective delivery of relief supplies to disaster victims. 
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II. ACADEMIC CONTEXT 

A. LITERATURE SURVEY 

An extensive literature review of the force structure and CONOPS of a MEU, 

U.S. Department of Defense (DOD) OE initiatives, MEU force capabilities, and HADR 

operations was conducted to better understand the area of research. The relevant portions 

are highlighted below. 

For greater details regarding the force structure and CONOPS of a MEU, the 

following military doctrines and documents were consulted. First, the Marine Air Ground 

Task Force (MAGTF) Logistics Planning Factors Study was used as a planning guide for 

the capabilities and resources that a notional MEU would deploy for a HADR operation. 

Secondly, the document Expeditionary Force 21: Forward and Ready Now and in the 

Future (2014) was referred to as a guide for how the USMC “will be postured, organized, 

trained, and equipped to fulfill assigned public law and national policy responsibilities” 

(Headquarters USMC 2014, 5). Thirdly, the USMC Expeditionary Energy Strategy and 

Implementation Plan (2011) was consulted to understand the expeditionary energy goals 

and initiatives/policies designed to meet these goals. Finally, the U.S. Department of 

Defense (DOD) 2016 OE Strategy document was studied to understand how the DOD 

plans to implement OE-focused initiatives in resupply operations. 

For analysis of HADR operations, there has been an increase in studies pertaining 

to this field as the quantity and severity of natural or man-made disasters have increased 

over the years. With particular reference to the study of resupply systems in HADR 

operations, Bergeron (2011) examines the force capabilities necessary to support HADR 

operations. He distills the 10 equipment capabilities essential for HADR operations, and 

he concludes that eight out of these 10 capabilities contribute toward the effectiveness of 

the resupply system, recognizing the main role that logistics plays in HADR operations. 

Menhart (2015) analyzes the effectiveness of prepositioned stocks toward HADR 

operations. He argues that with a shorter supply chain, militaries are able to respond more 

swiftly and sustain their missions for longer periods by not having to load and transport 
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large amounts of supplies not only across oceans and continents, but also across land. 

Moroney et al. (2013) outline the various capabilities and resources that the U.S. military 

can deploy for HADR operations. Indeed, given their inherent capability, flexibility, and 

adaptability to accomplish a full spectrum of operations, including operations-other- 

than-war, MEUs are particularly suitable to be deployed for HADR missions. Wolf 

(2003) stated that given the U.S.’s status as provider in times of crisis and the 

expeditionary posture of the Marine Corps, it is without doubt that the USMC will 

continue to be called on in the future to support HADR missions that are caused by 

tsunamis, hurricanes and earthquakes. 

B. MEU STRUCTURE AND CAPABILITIES 

The MEU is “a MAGTF constructed around a reinforced infantry battalion, a 

reinforced helicopter squadron, and a task-organized organized logistics combat element. 

It normally fulfills the Marine Corps’ forward sea-based deployment requirements. The 

MEU provides an immediate reaction capability for crisis response and is capable of 

limited combat operations” (USMC Expeditionary Energy Office 2011, 82). Given their 

inherent capability, flexibility, and adaptability to accomplish a full spectrum of 

operations, including operations-other-than-war, MEUs have traditionally been called 

upon to provide HADR to countries and areas that have been devastated by natural 

calamities and man-made catastrophes; at least three MEUs are actively deployed around 

the world at any given time to respond to any unexpected threats or disasters (Gastrock 

and Iturriaga 2013). To carry out its missions, the MEU is comprised of: (1) a command 

element, (2) a ground combat element, (3) an aviation combat element, (4) a logistics 

combat element, and (5) a Marine special operations company. The structure of a 

notional MEU is illustrated in Table 1. 
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 Structure of a Notional MEU. Source: Department of the Navy (2009, 1-1). Table 1.

 

 

To support a wide range of operations, the MEU carries with it a wide range of 

equipment. A sample list of baseline equipment that the MEU may carry aboard ship 

during deployment is detailed in Figure 5.  

 

Figure 5.  Sample MEU Baseline Equipment. Source: USMC . 
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C. DEFINITION OF HADR OPERATIONS 

Humanitarian assistance “consists of activities conducted to relieve or reduce 

human pain, disease, hunger, or deprivation created by conditions that might present a 

serious threat to life or that can result in great damage to or loss of property,” while 

disaster relief “refers to the goods and services provided to meet the immediate needs of 

disaster-affected communities” (Multinational Planning Augmentation Team 2010, D-1 

C-2).  

In addition, the Naval Operations Concepts 2010 – Implementing the Maritime 

Strategy document “distinguishes between the requirement to conduct both ‘Proactive’ 

and ‘Reactive’ HADR missions” (Department of the Navy and U.S. Coast Guard 2010, 

47–48). “‘Proactive’ HADR missions include regular engagement with foreign nations 

and NGOs to provide medical support, train first responders, and complete public works 

projects” (Bergeron 2011, 4–5), whereas “Reactive” HADR missions are the U.S. 

government’s and military’s response to a disaster that has already taken place. The aim 

of “Proactive” HADR missions is to increase the capability of the foreign nations and 

NGOs to deal with sudden unexpected disasters, while the aim of “Reactive” HADR 

missions is to reduce immediate human suffering. Regardless, these HADR missions 

allow the U.S. to generate goodwill and shape positive public perception of U.S. military 

and foreign policy. Unless otherwise stated, the HADR operations studied in this thesis 

refer to “Reactive” HADR missions, since military forces are typically deployed to assist 

in “Reactive” HADR missions rather than “Proactive” HADR missions. 

D. RECENT HADR OPERATIONS 

The USMC has participated in a wide range of HADR operations. Three case 

studies are presented in this thesis due to their recent, logistics-centric nature of 

operations for the USMC units involved, and due to the deployment of an entire MEU or 

larger MAGTF in each of these operations. 
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1. Operation TOMODACHI (Japan Earthquake and Tsunami) 

A magnitude 8.9 earthquake struck mainland Japan on 11 March 2011 and 

triggered tsunamis that hit the north coast of Japan. The released tectonic force was so 

great that it shifted the floor of the Pacific Ocean by nearly 20 meters and unleashed 

seven tsunamis, the highest of which was as tall as 14–20 meters and reached as far as six 

miles inland. In total, the disaster killed almost 20,000 people, injured 5,270, and left 

almost 2,500 missing (Fire and Disaster Management Agency 2016). In addition, the 

tsunamis also caused the “catastrophic failure of the cooling system at the Fukushima 

nuclear power station, which led to the explosive meltdown of the nuclear reactor” 

(Gastrock and Iturriaga 2013, 21). Early assessments by the Japanese government 

indicated that even with the complete mobilization of their military and civil defense 

forces, Japan would not be able to deal with the disaster alone; external support from its 

allies was required to ensure a complete recovery (Wilson 2012). Thus, Operation 

TOMODACHI was stood up by the U.S. Forces Japan (USFJ), with assistance from U.S. 

Pacific Command (PACOM), to assist Japan in its time of need.  

Among other things, the scope of Operation TOMODACHI included 

“radiological decontamination, humanitarian aid airlift/delivery and reception support, 

communication support, medical aid, search and rescue, and critical infrastructure 

recovery” (Gastrock and Iturriaga 2013, 52). The USMC participated mainly in 

transportation, search and rescue, and distribution of relief supply missions. In particular, 

the III Marine Expeditionary Force (MEF) was tasked to deliver supplies and clear access 

to affected areas (Moroney et al. 2013). Among other tasks, III MEF reconstructed the 

airport and various roads, cleared debris from schools for use as shelters, restored power, 

and delivered over “189 tons of food, 2 million gallons of water, and 87 tons of additional 

relief materials” (Wilson 2012, 17). In total, Operation TOMODACHI lasted 58 days 

from 12 March 2011 to 8 May 2011. 

2. Operation UNIFIED RESPONSE (Haiti Earthquake) 

A magnitude 7.0 earthquake stuck Haiti on 12 January 2010, which left 

approximately 220,000–316,000 dead and 300,000 injured (CNN 2016). The Joint Forces 
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Command (JFCOM) stood up Operation UNIFIED RESPONSE to provide HADR 

assistance to the devastated areas. II MEF deployed the 22nd and 24th MEUs, as part of 

Joint Task Force Haiti (JTF-H), to provide HADR support to Haiti.  

The task force focused efforts on establishing sea-based operations from 
which it could manage a hub-and-spoke-style distribution network of 
relief supplies. Initial and continuing guidance for the MEUs were to 
provide food, water, and critical medical aid to those affected by the 
disaster. This was evidenced through the U.S. Southern Command’s 
mission to deploy assets to Haiti to conduct search and rescue operations, 
damage assessments, and transition to sustained HADR operations in 
order to prevent human suffering and additional loss of life. (Gastrock and 
Iturriaga 2013, 19) 

The 24th MEU utilized MV-22 Osprey aircrafts to conduct aerial assessments of: 

(1) the damages inflicted by the earthquake, (2) infrastructure, and (2) the relief 

distribution capabilities in Haiti that were still functional. In terms of supply operations, 

the MEUs utilized their rotary-wing assets to distribute food and water supplies from the 

World Food Program Non-Governmental Organization (NGO) to 16 food distribution 

points for downstream distribution to Haitian victims (Gastrock and Iturriaga 2013). In 

total, 36 tons of emergency relief supplies were delivered through the MEUs (Cecchine et 

al. 2013). Operation UNIFIED RESPONSE was one of the longest U.S. military efforts 

in a foreign disaster relief operation, starting on 13 January 2010 and ending on 1 June 

2010, a total of almost five months. 

3. Operation SEA ANGEL II (Bangladesh Cyclone) 

Cyclone Sidr ravaged Bangladesh on 15 November 2007. “More than 3,200 

people were killed, an estimated 40,000 people were injured, and 1.6 million acres of 

farmland were destroyed” (Gastrock and Iturriaga 2013, 17). In response, the PACOM 

stood up Operation SEA ANGEL II to provide HADR for the unfortunate victims, and 

deployed the “Kearsarge Expeditionary Strike Group (ESG), the 22nd MEU, and a 

humanitarian assistance survey team (HAST) from the III MEF to assist in the relief 

operations” (Gastrock and Iturriaga 2013, 17).  
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As soon as the tasking order was given, Kearsarge and the 22nd MEU quickly 

began supply redistribution operations on 23 November 2007, utilizing their sea, air, and 

land assets. On land, “the third MEB provided aid in the following priorities: (1) water 

distribution and storage, (2) relief supplies distribution and transportation, and (3) 

preventive and primary medical care” (Gastrock and Iturriaga 2013, 18). These priorities 

were supported by the HAST’s assessment on the ground and requests from the 

Government of Bangladesh.  

By 30 November 2007, they had delivered over 12,000 gallons of water 
and over 73,000 pounds of aid supplies. A majority of the water delivered 
initially was produced aboard Kearsarge, which had the capability to 
produce 200,000 gallons of potable water daily. Five-gallon collapsible 
bags were filled with the water, placed on pallets, and loaded onto aircrafts 
and ground transport vehicles for distribution. (GlobalSecurity 2013) 

To increase the throughput of supplies to disaster victims, USMC leadership also 

proposed setting up a secondary LDC along the southeast coast. The government of 

Bangladesh did not accede to this request, however, and only one LDC was used 

throughout Operation SEA ANGEL II (Gastrock and Iturriaga 2013). In total, Operation 

SEA ANGEL II lasted 20 days from 18 November 2007 to 8 December 2007. 

E. EXTENDING OPERATIONAL REACH 

Salem and Gallenson (2014) studied the impact of human behavior on OE. They 

suggest that reducing expeditionary energy use may offer the opportunity to “extend 

reach, save lives, and utilize operational budgets wisely” (Salem and Gallenson 2014, 2). 

The first two benefits are directly applicable to a HADR resupply mission. They focused 

on the “behavioral aspect of the Marines’ ‘ethos change’ to investigate the broad 

behavioral and attitudinal factors that may affect the overall efficient use of energy” 

(Salem and Gallenson 2014, 6–7). The authors used “ethnographic methods and 

Grounded Theory” (Salem and Gallenson 2014, 7) to collect data from actual Marines in 

actual operational environments to understand how their personal knowledge, attitudes, 

values, and motivations may vary according to different operational scenarios. In terms of 

convoy resupply operations, which is the main research topic of this thesis, they identify 

that “technology and ineffective policies and procedures have had the largest impact on 
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efficient fuel use” (Salem and Gallenson 2014, 32); potential solutions should be targeted 

at improving these two factors.  

Similarly, Peters (2016) explores the “factors that influence human behavior and 

negatively affect energy consumption in USMC ground units during operations” (Peters 

2016, 2). He asserts that “improvements to equipment and the employment of renewable 

energy systems fail to address the impact that human behavior has on energy 

consumption” (Peters 2016, v); in particular, there exists:  

A huge opportunity in implementing a behavior-change strategy to 
improve individual and organizational awareness of the importance of 
efficient and effective use of energy. The proposed behavioral changes 
may result in: (1) improved energy security, (2) greater self-sufficiency, 
(3) increased operational reach, and (4) fewer casualties from the force 
protection of resupply convoys. (Peters 2016, 45) 

This thesis recognizes the huge impact that human factors have on extending 

operational reach. Subsequently, enhancements to baseline capabilities shall include 

strategies aimed at changing operator attitudes and behavior toward OE usage. 

F. MODELING HADR SCENARIOS 

Analytical or optimization models seem to be more widely used to model HADR 

scenarios. Taniguchi and Thompson (2013) use a multi-objective optimization model to 

investigate the distribution of relief supplies to displaced victims in the city of 

Ishinomaki, Miyagi prefecture after the earthquake and tsunamis that struck Japan in 

2011. The chosen objectives to be explored were: “(1) penalty of total shortage of supply, 

and (2) fuel consumption, as these objectives were determined to be the most critical for 

the distribution of relief supplies after a disaster” (Taniguchi and Thompson 2013, 208). 

Using a “multi-objective vehicle routing and scheduling problem” formulated by 

Okabayashi et al. (2011, I-887), Taniguchi and Thompson used the “elitist non-

dominated sorting genetic algorithms method” to minimize the penalty of total shortage 

of supply and fuel consumption (Taniguchi and Thompson 2013, 210).  

Simulation models have also been used to study HADR scenarios. For example, 

Wolf (2003) investigated the potential for using “agent-based models to support logistical 
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decision-making in an urban HADR environment” (Wolf 2003, 2). To do so, he 

developed an agent-based model using MANA version 2.1 to investigate the 

effectiveness of a resupply convoy in distributing food to locals who have traveled to a 

couple of LDCs in an urban setting. Using data farming coupled with a Latin Hypercube 

design of experiments, Wolf was able to explore a very large data space in order to 

identify which input variables had the most effect on the mission success of distributing 

food. There were three entities in his model: (1) blue agents representing a convoy of 

relief supplies including a USMC security element, (2) yellow agents representing 

disaster victims who required aid, and (3) red agents representing “random harassing fire 

that could be encountered in a man-made humanitarian crisis such as a civil war” (Wolf 

2003, 6). He concluded that the effectiveness of local communications was a critical 

factor in determining success, as it increased the squad awareness of the convoys to travel 

to potential locations of the disaster victims, and it also brought the disaster victims 

closer to the convoys once they knew that a convoy was nearby (Wolf 2003). Other 

simulation methods presented by Besser et al. (2013) and Alexander et al. (2011) used 

ExtendSim and SimKit software to study the operational reach and throughput of 

resupply systems in HADR operations by varying the type/use of vehicles and other OE-

focused assets. 
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III. METHODOLOGY 

A. INTRODUCTION 

This section describes the research methodology used in this thesis. First, an SE 

approach was used to identify the system functions of a resupply system in a HADR 

operation. We define different system configurations of OE-focused assets and CONOPS 

as alternatives for study. Second, open source and unclassified material was used to 

construct a notional HADR scenario that could be used to represent the last-mile delivery 

and distribution of relief supplies to isolated victims. This scenario was used to provide 

generalized insights into the interactions and potential tradeoffs between OE-focused 

assets, CONOPS, and operational reach in a HADR scenario.  

B. FUNCTIONAL ANALYSIS FOR HADR OPERATIONS 

In the SE process, 

functional analysis refers to an iterative process of translating system 
requirements into detailed design criteria and the subsequent identification 
of the resources required for system operation and support. It includes 
breaking requirements at the system level down to the subsystem, and as 
far down the hierarchical structure as necessary to identify input design 
criteria and / or constraints for the various elements of the system. The 
purpose is to develop the top-level system architecture, which deals with 
both “requirements” and “structure.” (Blanchard and Fabrycky 2011, 86)  

Functional analysis guides the formulation of system instantiations that will be studied in 

this thesis, as well as identifying the appropriate measures of effectiveness (MOEs). 

In this aspect, HADR operations consist of “activities conducted to relieve or 

reduce human pain, disease, hunger, or deprivation created by conditions that might 

present a serious threat to life or that can result in great damage to or loss of property” 

(Multinational Planning Augmentation Team 2010, D-1 C-2), while disaster relief refers 

to the “goods and services provided to meet the immediate needs of disaster-affected 

communities” (Multinational Planning Augmentation Team 2010, D-1 C-2). To that end, 

the essential tasks in HADR operations include: “(1) information and knowledge 

management, (2) needs assessment, (3) supply, (4) deployment and distribution, (5) health 
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service support, and (6) collaboration and governance” (Apte and Yoho 2012, 312). The 

top-level functional breakdown of Conduct HADR Operations is illustrated in Figure 6.  

 

Figure 6.  Top-Level Functional Hierarchy of HADR Operations. 
Adapted from Apte and Yoho (2012). 

Conduct Information and Knowledge Management refers to the continuous 

collection, organization, and analysis of real-time information in order to prepare for 

needs assessment and operation planning. Conduct Needs Assessment refers to the 

determination of the scale of disaster destruction and the scope of disaster aid that must 

be delivered to provide relevant and timely relief. Conduct Supply refers to the 

procurement, warehousing, and managing of relief supplies. Conduct Deployment and 

Distribution refers to the transport and distribution from their storage locations to their 

point of consumption. Conduct Health Service Support refers to the provision of medical 

aid. Lastly, Conduct Collaboration and Governance refers to the partnership between all 

HADR stakeholders and related security operations for the HADR operation to be 

conducted in an effective and efficient manner. 

This thesis will focus on the function to Conduct Deployment and Distribution, 

since this function typically consumes the largest amount of OE in a HADR operation. 

For the purpose of this thesis, this function shall be renamed as Conduct Resupply 

Operations for language consistency. Subsequently, this function can be further 

decomposed into three modes of resupply operations: (1) air-based logistics, (2) sea-

based logistics, and (3) ground-based logistics. This thesis will only study the impact of 
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ground-based logistics, however, for the following reasons. First, one of the most 

important tasks in HADR operations is the last mile distribution of relief supplies to 

affected victims, in particular to victims who may be displaced and isolated ; ground-

based vehicles are most adept at performing this task, while sea-based assets are unable 

to achieve this objective. Second, air assets were not considered because they are 

considered less energy-efficient than ground-based vehicles, especially when they are 

tasked with distributing supplies to small, localized populations spread over large areas. 

Third, landing zones near isolated victims may be unavailable in the immediate situation 

after a disaster, and hence air assets are usually employed to deliver relief supplies from 

the sea base to land warehouses instead. Ruggedized military ground vehicles such as the 

Medium Tactical Vehicle Replacement (MTVR), however, are still able to traverse 

damaged and unpaved roads. For these reasons, ground-based logistics form the primary 

focus of this study. 

In turn, ground-based logistics can be functionally decomposed into: (1) water 

production, (2) transport supplies, (3) provide storage, (4) perform maintenance, and (5) 

provide shelter (Alexander et al. 2011). See Figure 7.  for the functional decomposition of 

ground-based logistics. 

 

Figure 7.  Functional Decomposition of Conduct Resupply Operations. 
Adapted from Alexander et al. . 
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As mentioned in Chapter I, this thesis studies whether or not the implementation 

of OE-focused assets and behaviors improves the operational reach of a resupply system 

for HADR operations. Hence, the refined functional decomposition shall only concentrate 

on the subset of ground-based logistics, and specifically the function of transporting 

supplies. This is because the transportation of supplies consumes the most OE and is 

most impacted by the increase/decrease in operational reach (Salem and Gallenson 2014). 

See Figure 8.  for the refined functional decomposition of Conduct Resupply Operations. 

 

Figure 8.  Refined Functional Decomposition of Conduct Resupply Operations. 

C. BASELINE RESUPPLY CAPABILITIES 

From the sample list of baseline equipment in Figure 5, the relevant equipment 

that the MEU can utilize for HADR resupply missions are listed in Table 2. Other 

unmanned logistics support vehicles such as the K-MAX helicopter were considered, but 

were ultimately not incorporated into this research, as they have not been fully equipped 

throughout all MEUs.   
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 Relevant Equipment for HADR Resupply Missions. Table 2.

S/N Equipment Quantity

1 High Mobility Multipurpose Wheeled Vehicle (HMMWV) 105 

2 Assault Amphibious Vehicles 15 

3 Medium Tactical Vehicle Replacement (MTVR) 31 

4 Excavator 1 

5 MV-22B Osprey 22 

6 CH-53E Super Stallion 4 

7 UH-1N Huey 3 

8 KC-130 Hercules 2 

9 TRAM Forklift 2 

10 5,000lbs Forklift 1 

11 Extended Boom Forklift 1 

12 D7 Bulldozer 1 

This thesis does not consider unmanned logistics vehicles such as the K-MAX cargo resupply 
unmanned aerial system because it has not been deployed throughout all MEUs. 

 

1. Analysis of Equipment Relevant for HADR Resupply Missions  

In an analysis of the energy consumption of MEU equipment performed by 

Besser et al. using the Marine air-ground task force power and energy model (MPEM) 

(2013), it was revealed that the operation of air assets consumed the most amount of fuel 

per platform type, and left as a separate follow-on study. Hence, air assets are excluded 

from analysis in this thesis. The results of the MPEM analysis also revealed that it would 

be most beneficial to focus on reducing the logistical footprint, fuel consumption, and 

energy consumption of MTVRs (Besser et al. 2013). Indeed, given the MTVR’s ability to 

traverse harsh terrain and transport food, water, and supplies, and that it is used by the 

USMC almost on a daily basis, it is one of the most suitable assets to be considered as the 

baseline resupply capability in HADR operations. Other ground-based assets such as 

armored assault vehicles, armored combat vehicles, and tanks were also considered but 

eliminated from further analysis due to their inability to transport and distribute large 

amounts of relief supplies, as well as low probability of their deployment in HADR 

resupply operations.  
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2. MTVR Capabilities 

The MTVR is a seven-ton truck used by the USMC for ground maneuver and 

transportation operations. It has seven variants: (1) MK23 standard cargo truck, (2) 

MK25 standard cargo truck with winch, (3) MK27 extended cargo truck, (4) MK28 

extended cargo truck with winch, (5) MK29 dump truck without winch, (6) MK30 dump 

truck with winch, and (7) MK36 wrecker. The selected variant to be used in this thesis is 

the MK23, as it is the most commonly used base model, and it contains all of the 

necessary capabilities to support a HADR resupply operation such as transporting bulk 

water and heavy equipment. 

The MK23 (Figure 9. ) is equipped with a cargo bed that can be configured to 

carry water tanks, bulk cargo, and refueling equipment. In terms of maneuverability, the 

MK23 is able to ford 60 inches of water and traverse over 24-inch vertical steps. This 

allows it to travel to disaster-affected areas where roads may be degraded/destroyed or 

obstructed by floods or building rubble. In terms of carrying capacity, the MK23 is able 

to carry up to 6.3 tons of payload while travelling on cross-country roads, which allows it 

to transport an ample amount of water and supplies. In sum, these capabilities are 

essential when operating in a HADR environment (Peters 2016). 

 

Figure 9.  MK23 MTVR in Standard Cargo Truck Configuration. 
Source: Jane’s by IHS Markit (2014). 



 29

D. ENHANCED OPERATIONAL ENERGY-FOCUSED RESUPPLY 
STRATEGIES AND CAPABILITIES 

In February 2011, the USMC published an Expeditionary Energy Strategy and 

Implementation Plan to “develop a plan to decrease the Marine Corps’ dependence on 

fossil fuels in a deployed environment” (USMC Expeditionary Energy Office 2011, 5). In 

particular, the plan states that the USMC aims to: “(1) embed expeditionary energy into 

USMC ethos, (2) lead and manage expeditionary energy, (3) increase the energy 

efficiency of weapon systems, platforms, vehicles, and equipment, and (4) meet 

operational demand with renewable energy.” The expeditionary energy goals and the 

expected efficiency targets that the USMC aims to progressively achieve are listed in 

Figure 10.  

 

Figure 10.  Expeditionary Energy Goals. 
Source: USMC Expeditionary Energy Office (2011, 22). 

Considering the aforementioned proposed goals by the USMC, this thesis studied 

several enhancements that aim to improve the usage of OE in a HADR mission to extend 

a MEU’s operational reach. Recommendations from this study revolve around the 

operation and capabilities of the MTVR as a good proxy for the enhancements to other 

ground-based vehicles. 

1. Reducing Idling Time 

Vehicle convoys are essential for HADR resupply operations. These convoys are 

planned operations to search for isolated disaster victims and distribute relief supplies to 
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them. These operations also contribute to the most fuel wastage in terms of excessive 

vehicle idling, however. Currently, there are no pre-combat checks (PCCs) and tactics, 

techniques, and procedures (TTPs) for vehicle idling (Salem and Gallenson 2014, 31). 

Consequently, this has led to a mentality of “idling is just the cost of doing business” for 

Marines conducting convoy operations; without command emphasis and effective 

policies on reducing vehicle idling time, Marines are unable to translate increased energy 

efficiency to improved operational reach. Indeed, “observations captured during training 

exercises conducted at Marine Corps Air-Ground Combat Center (MCAGCC) in 

Twentynine Palms, CA found that excessive idling was prevalent throughout the training 

environment and observed on multiple occasions. Vehicles were left idling in excess of 

20 minutes while Marines prepared for a tactical logistics convoy” (Peters 2016, 28–29). 

Failure to conduct proper PCCs and inspections also contributed to additional delays of 

more than 25 minutes while missing equipment was located . Instrumented vehicles were 

used during seven Integrated Training Exercises (ITXs) from 2013 to 2015, which 

allowed for vehicle data such as “vehicle run time, idle time, fuel consumption, and 

mileage” (Peters 2016, 29) to be captured and analyzed. The captured data is shown in 

Table 3. In particular, the idling time for MTVRs was 63.7%, which contributed to 26.7% 

of fuel wastage. The miles per gallon (MPG) without idling was 4.5 but decreased to 3.15 

with idling, a 30% decrease (Department of the Navy 2010). In reality, some idling time 

cannot be totally prevented due to operational requirements or traffic conditions; 

nevertheless, the observations and data collected indicate there are significant OE gains 

to be reaped through reductions in vehicle idling time and fuel wastage. 

 ITX Vehicle Data. Source: Department of the Navy . Table 3.
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2. Employing Trained Drivers 

Numerous studies have been conducted regarding the effects of driving behavior 

on fuel efficiency, and it can be generally concluded that “aggressive driving behaviors 

such as fast acceleration and hard braking reduces fuel efficiency” (Peters 2016, 31). 

Indeed, a “fuel management study of medium and heavy ground-based vehicles including 

the MTVR” (Peters 2016, 31), performed by the Pennsylvania State Applied Research 

Laboratory, indicated that the “impact of erratic accelerator demand and excessive 

braking by the driver had detrimental effects on fuel economy” (Crow 2014, 2), and that 

“good driving habits offered a potential benefit of 30 percent in fuel economy 

improvements” (Crow 2014, 2). In addition, experiments conducted by the University of 

California, Davis also revealed that fuel economy differences from driving behaviors may 

vary up to nearly 30 percent between different drivers (Kurani et al. 2015). These two 

studies suggest that OE usage may be potentially reduced by the employment of trained 

drivers who are proficient at efficient driving techniques. 

3. Employing Hybrid Technologies 

Hybrid technologies have been widely adopted and implemented in the civilian 

automobile industry; indeed, most major carmakers today have at least one hybrid vehicle 

in their inventory list, (e.g., Toyota Prius, Hyundai Ioniq, Ford Fusion Hybrid, Chevrolet 

Volt). This has sparked interest in the military to explore hybrid technologies as a means 

to improve the energy efficiency of their ground vehicles as well. Firstly, hybrid 

technologies employ stop-start systems to stop the engine when a vehicle comes to a stop 

and automatically restart it to resume driving, regenerative braking, and large electric 

motors and batteries to reduce fuel consumption. Secondly, hybrid technologies may also 

serve as on-board generators to provide a source of auxiliary power to operators if 

needed. This eliminates the need to keep a vehicle idling when using its attached 

components, such as the heating, ventilation and air-conditioning system, improving fuel 

economy. Since hybrid systems range from hydraulic hybrid to diesel-electric, the DOD 

has invested funds to conduct research, development, test and evaluation (RDT&E) 

across a range of vehicles to determine which hybrid combination is the most feasible for 



 32

military applications and yields the most fuel savings. For the MTVR, the Office of 

Naval Research (ONR) had engaged the original equipment manufacturer (OEM) 

Oshkosh Defense to produce a hybrid diesel-electric variant, dubbed the “ProPulse”—

Oshkosh Defense claims that the ProPulse is able to improve fuel economy of the MTVR 

by up to 20% (Oshkosh Defence 2017). 

4. Employing Follower Vehicle Technologies 

The USMC Unmanned Ground Systems (UGS) Roadmap identifies that UGS are 

proving to be important for current combat operations, future contingencies, crisis 

response, and HADR scenarios (Besser et al. 2013). For a HADR resupply system, 

research indicates that autonomous and follower cargo vehicles may provide the required 

operational capabilities at a lower fuel consumption rate through efficiencies from 

automated driving, weight reduction, and reduced idling time. In particular, the 

Autonomous Mobility Appliqué System (AMAS) is an add-on robotics hardware kit that 

can be installed onto any MTVR to enable it to operate in a semi-autonomous/follower 

mode. The AMAS preliminary joint technology capability demonstration business case 

indicates that follower vehicles may achieve up to 7% in fuel savings due to optimized 

and fuel-efficient automated driving cycles (Besser et al. 2013). 

E. OPERATIONAL SCENARIO 

The operational scenario selected for constructing the simulation model is the 

support provided by the 31st MEU to the city of Hachinohe, Aomori prefecture as part of 

Operation TOMODACHI. Because ports were still operational after the disaster, 

Hachinohe and neighboring Miyako were selected as land bases for the HADR efforts 

along the affected northeastern coast of Japan (National Bureau of Asian Research 2014). 

The location of the ports at Hachinohe and Miyako is shown in Figure 11.  Among other 

tasks, the 31st MEU delivered humanitarian aid supplies, including blankets and fresh 

water, to affected communities along the coast (Lubin 2011). The scenario starts after the 

31st MEU’s sea-based HQ has unloaded relief supplies onto the land warehouses and 

LDCs. It concentrates on the first 72 hours of the ground resupply effort as the first 72 

hours of a disaster relief effort is critical to the survival of isolated victims; the chance of 
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survival beyond this time window decreases drastically without replenishment of food 

and water (Zeimpeikis et al. 2013, v).  

 

Figure 11.  Location of Operational Ports at Hachinohe and Miyako. 
Adapted from Google Maps. 

F. THE MANA COMBAT SIMULATION TOOL 

This thesis utilized a large-scale design of experiment (DOE) applied to an agent-

based simulation. A typical simulation used by the Department of Defense (DOD) today 

involves hundreds to thousands of inputs, with multiple possible settings (levels) per 

input and many sources of uncertainty. As HADR resupply operations are complex and 

varied (Simoes-Marques and Nunes 2013), large-scale DOE methodology applied to 

simulation is hence suitable to capture and analyze such operations. Coupled with 
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technological advances in computing power and state-of-the-art experimental designs, it 

is now possible to obtain deeper insights from large-scale DOE applied to simulations. 

Previously, DOE applied to simulations were constrained in scope due to limited 

computing resources. Additionally, haphazard exploration of simulations may miss 

important insights or worse, yield incorrect conclusions (Sanchez et al. 2012). 

“MANA is an agent-based model developed at the Defence Technology Agency 

in New Zealand by the Operations Analysis group” (McIntosh 2009, 4). MANA is an 

example of an agent-based simulation, which means that it may be able to capture 

unanticipated emergent interactions between agents, which may give rise to a wider range 

of potential outcomes. More specifically, MANA is “an agent-based distillation model” 

(Anderson 2013, 1), which means that it intends to capture only as much physical detail 

as necessary, but yet is still capable of producing required data for more complex 

analysis. Lastly, MANA is also known as a “complex adaptive system because of the way 

that the agents react with each other in the simulated environment; the ‘global’ behavior 

of a system ‘emerges’ as a result of the many localized interactions between the agents” 

(McIntosh et al. 2007, 5). Indeed, such is the usefulness and efficiency of MANA that 

there have been a number of theses completed at the Naval Postgraduate School (NPS) 

that have utilized MANA as their simulation tool, such as Wolf (2003), Hinkson (2010), 

and Cheang (2016). 

Continuous development and upgrades of the MANA model have been ongoing 

since the first version was released in 2000. MANA-Vector (MANA-V) version 5.01.09 

was used in this thesis. In this version, a vector-based approach is implemented for agent-

based movement, as compared to a grid-based scheme used in previous versions. This 

allows all distances, sensor and weapon ranges, and agent speeds to be defined in terms 

of Système Internationale units. This eliminates the need to convert real-world distances 

to number of grid squares, and provides greater flexibility in developing new model 

features (McIntosh 2009). 
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G. MANA SIMULATION MODEL 

This section describes the implementation of the operational scenario as described 

in Section E in MANA. Firstly, it describes the goals and concept of the model. 

Secondly, it presents the assumptions used in the construction of the model. Lastly, it 

describes the agents used in the model, as well as certain workarounds required to 

simulate the act of resupply in MANA, since MANA has no such predefined function.  

1. Goal of Simulation Model 

Typical HADR operations involve three broad phases: (1) emergency response, 

(2) relief provision, and (3) restoration to normalcy (Multinational Planning 

Augmentation Team 2010). This thesis will only study the land-based resupply 

operations conducted in Phase 2. Specifically, the scenario starts after a MEU sea-based 

HQ unloads relief supplies onto land warehouses. The modeling effort will help to derive 

insights on the effectiveness of OE-focused assets in supporting the logistical capability 

and throughput of the land distribution of relief supplies.  

2. Conceptual Model 

The simulation represents a distribution model as shown in Figure 12.  There are 

two types of storage entities for relief supplies: (1) LDCs (the land warehouses) and (2) 

dynamic distribution teams (DDTs). The LDCs act as a stockpile for relief supplies, 

while the DDTs search for and distribute relief supplies to the isolated victims. The 

storage entities have different storage capacities and are used to store two categories of 

HADR supplies most essential for immediate survival: (1) food/supplies and (2) water. 

For the purpose of simulation in MANA, these supplies will be amalgamated into one 

resource known as “ammunition,” and each supply entity will begin at its fully loaded 

capacity at the start of the simulation. As the simulation runs, the DDTs will consume 

fuel as they travel around the disaster area searching for isolated victims. As the disaster 

area is often damaged, isolated victims may be difficult to locate. This is captured in 

MANA by assigning an initial concealment value to the victims. The concealment value 

serves as a “stealth” factor within the simulation; the higher the concealment of an agent,  
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the more difficult it is to detect and classify it with a sensor. When DDTs are able to 

detect, classify, and thus locate, a victim, the DDTs will then be able to “shoot” the 

victim with a special non-lethal “weapon” whose single shot of ammunition represents 

the delivery of relief supplies to the isolated victim. When a resupplied victim encounters 

a yet-to-be resupplied victim within his user-defined local “neighborhood,” he will 

engage in a simulation interaction that is meant to capture that he informs the latter and 

the DDTs of the presence of other victims. This interaction causes the concealment value 

of the yet-to-be resupplied victim to go to 0%, as he tries to make himself more visible to 

the DDTs in order to be resupplied. When the DDTs run out of supplies (ammunition) or 

fuel, they will return to the land warehouses for resupply using a “pull” concept. The 

DDTs will always move out from the LDCs at full ammunition and fuel levels. If a DDT 

returns to a land warehouse but finds the warehouse in the process of resupplying other 

DDTs, it must wait its turn to be resupplied before it can receive a full supply of fuel and 

ammunition and consequently be able to move out for another mission. 

 

Figure 12.  HADR Resupply Model. 

3. Map Information 

A map image obtained from Google Maps of Hachinohe and the surrounding area 

(including the Aomori and Iwate prefectures) is used as the background map for this 

thesis (Figure 13. ). The dimension of the map is defined to be 60 miles by 100 miles 

(Figure 14. ). No relief or elevation information was used in this model as this level of 

detail was not considered necessary for this study; the DDTs must be able to traverse 

degraded roads, building debris, and forested areas to reach the affected victims.  
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Figure 13.  Map of Hachinohe and the Surrounding Areas Used in MANA. 
Source: Google Maps. 

 

Figure 14.  Map Size Used in MANA. 
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A terrain map (Figure 15. ) is used by MANA to influence the movement of 

agents in the simulation model. Essentially, a bitmap image is used to represent different 

types of terrain using a variety of colors. Each color represents a set of values for terrain 

characteristics such as “Going,” “Cover,” and “Conceal.” The values range from 0.00 to 

1.00. A value of 1.00 for “Going” means that movement is unobstructed, while a value of 

0.00 for “Going” means that the piece of terrain is unpassable. The characteristics for 

“Cover” and “Conceal” are not used in this thesis. Among the range of terrain types 

available, this thesis only uses three types of terrain: dirt, road, and water. Dirt is 

represented by the color brown, and represents building rubble and degraded roads. 

Roads are represented by the color yellow, and represent trafficable roads in the map. 

Water is represented by the color blue, and is not trafficable for MTVRs. 

 

Figure 15.  Simulation Terrain Map. 
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The simulation terrain properties are shown in Table 4. The pertinent values for 

this thesis are highlighted in red boxes. 

 Simulation Terrain Properties. Table 4.

 

4. Data Sources and Assumptions 

Effort was made to use credible data sources and reasonable assumptions to create 

a representative model capable of providing useful insights. One limitation to the study is 

the author’s non-access to U.S. classified data about the actual operations and after-action 

reports, however. Hence, most data sources are from past master’s theses from NPS and 

unclassified information about similar operations or related subjects. The E2O also 

provided data and feedback through email consultation, monthly updates, and quarterly 

in-progress briefings. Key assumptions used in the MANA model are as follows: 

1. The 31st MEU has completed the sea-to-ground transfer of relief supplies 
to the LDCs. 

2. LDCs contain sufficient supplies to resupply all isolated victims; no 
resupply to the LDCs is required in the simulation. For the simulation, five 
LDCs are utilized. The locations of the LDCs are shown in Figure 16, as 
blue “plus” signs surrounded by yellow circles. 



 40

 

Figure 16.  Location of LDCs. Adapted from Google Maps. 

3. The relief supplies at Hachinohe are used to aid survivors in neighboring 
Aomori and Iwate prefectures. Literature study indicates that there were 
about 4,000 people missing (Table 5). It is also assumed that they 
congregate in groups of 40 each, resulting in a total of 100 victim agents 
in the simulation. It is further assumed that the missing people are 
randomly dispersed across three areas in the map (Figure 17. ); victims are 
distributed proportional to the size of their homebox. A homebox is a term 
used in MANA to refer to the default location of an agent in the scenario 
map. Based on their relative homebox sizes, H0 contains 34% of victim 
agents, H1 contains 6% of victim agents, and H2 contains 60% of victim 
agents. 
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 Population Affected by Tsunami. Table 5.
Adapted from Vervaeck and Daniell (2011). 
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Figure 17.  Distribution of Isolated Victims. Adapted from Google Maps. 

4. At the beginning of each simulation run, it is assumed that DDTs all start 
out either at the port of Hachinohe or the port of Miyako. It is planned for 
DDTs from the port of Hachinohe to supply isolated victims in homeboxes 
H0 and H1, while DDTs from the port of Miyako are used to supply 
isolated victims in homebox H2. Consequently, the number of DDT 
convoys are distributed proportionally according to the number of victims 
that the DDTs are intended to supply (i.e., approximately 40% of total 
DDT convoys will depart from Hachinohe, while approximately 60% of 
total DDT convoys will depart from Miyako). In operational plans where 
there are fewer DDT convoys than homeboxes, some homeboxes may not 
be occupied and there will be some areas that may not be able to be 
covered during the simulation runs due to time or vehicle constraints. The 
locations of the DDT homeboxes are shown in the Appendix. The number 
of DDT agents in each homebox is listed in Table 6. 
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 Number of DDT Agents in Each DDT Homebox. Table 6.

Operational 
Plan 

Homebox 
H0 

Homebox 
H1 

Homebox 
H2 

Homebox 
H3 

Homebox 
H4 

Homebox 
H5 

1 1 1 0 1 1 1 

2 1 0 0 1 0 0 

3 0 1 1 1 1 1 

4 0 1 0 1 0 1 

5 1 2 1 2 2 2 

6 1 0 1 1 1 1 

7 1 1 0 0 1 1 

8 1 1 0 1 1 1 

9 2 2 2 3 3 3 

10 2 1 1 2 2 2 

11 1 1 1 1 1 1 

12 0 1 1 1 1 1 

 

5. To speed up calculations, this simulation utilizes 30 seconds per time step. 
The scenario runs for 72 hours as the first 72 hours of a disaster relief 
effort is critical to the survival of isolated victims (Zeimpeikis et al. 2013), 
which equates to 8,640 time steps.  

6. It is assumed that the isolated victims will be provided with three days’ 
supply (DOS) as an interim solution. For comparison, planning parameters 
indicate that Marines carry with them one DOS when conducting 
dismounted operations, and are also supported by one DOS by the combat 
train. Eventually, the goal is to enable the disaster victims to recuperate 
and travel to shelters set up by NGOs for further treatment and centralized 
distribution of supplies. 

7. Literature study indicates that a total of 3.1 pounds (1.5kg) of aid, per 
person, per day, is required for daily replenishment. (Alexander et al. 
2011). In addition, USAID stipulates that 15 liters of water, per person, 
per day, is required to meet minimum survival standards. In total, it is 
assumed that the amalgamated relief supply quantity is 16.5kg per person 
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per day; 49.5kg (≈ 50kg) of relief supplies are required per person for 3 
days. 

8. It is assumed that the DDTs deliver potable water to the isolated victims. 
Water foraging technologies such as water purification tablets and 
LifeStraws are out of the scope of this thesis. 

9. It is assumed that the roads are significantly damaged, and hence MTVRs 
are required for the DDTs to deliver supplies to isolated victims.  

10. USMC standard operating procedure (SOP) for convoy operations states 
that convoy speeds should be decreased to maintain convoy integrity for 
longer convoys (USMC 2017b). In general, realistic parameters for a 
convoy travelling on country roads for operations other than war are 15 to 
40 km/h (10 to 30 MPH) (Schrepf 1999). Taking 10 MPH as a lower 
bound and 30 MPH as an upper bound, and assuming a linear correlation 
between convoy length and convoy speed (GlobalSecurity 2017), the DDT 
convoy lengths and their respective convoy speeds used in this thesis are 
listed in Table 7. 

 Convoy Length and Convoy Speed. Table 7.

Convoy 
Length 

Convoy Speed 
(MPH) 

2 30 

3 25 

4 20 

5 15 

6 10 

 

11. Although vehicle speed generally has an inverse relationship with fuel 
efficiency, it is assumed that the speed of the DDT convoys does not affect 
their fuel consumption. This is because the speeds of the DDT convoys in 
this thesis only range from 10 to 30 MPH (Table 7). Fuel efficiency 
usually decreases only at speeds above 50 MPH (U.S. Department of 
Energy 2017). 

12. It is assumed that the default sensor range of the DDT convoys is 3,000m 
as human-scale objects are resolvable as extended objects from a distance 
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of just under 3,000m (Wolchover 2012). Further, it is also assumed that 
the effectiveness of the DDTs in locating isolated victims is inversely 
related to their convoy speed. This is because longer and slower convoys 
are able to spend more time scanning the environment, and they have 
more manpower to scan for isolated victims. Assuming that the sensor 
range factor decreases by 5% for every five MPH increase in convoy 
speed, the DDT convoy speeds and their respective sensor range factors 
used in this thesis are listed in Table 8. 

 Convoy Speed and Sensor Range Factor. Table 8.

Convoy Speed 
(MPH) 

Sensor Range 
Factor 

30 0.80 

25 0.85 

20 0.90 

15 0.95 

10 1.00 

 

13. Out of the total carrying capacity of 6.3 tons of the MTVR, it is assumed 
that the space allocated for relief supplies is 6 tons due to the need to 
transport troops and other equipment for HADR (e.g., medical relief 
equipment, and search and rescue equipment). This translates to each 
MTVR being able to carry two shots of “ammunition” representing relief 
supplies. One shot of “ammunition” is able to resupply one victim cluster 
of 40 victims. 

14. It is assumed that the default fuel efficiency of the MTVR is a constant 4.5 
MPG (Table 3). In reality, the fuel efficiency is a function of driving 
behavior, proportion of time idling, terrain, and how heavily the MTVR is 
loaded. 

15. It is assumed MTVRs move along pre-planned routes as decided upon by 
the MEU commander. An example of a pre-planned route in MANA is 
shown in Figure 18.  Images of all six pre-planned routes used in this 
thesis are shown in the Appendix. 
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Figure 18.  Example of a Pre-Planned Route in MANA. 
Adapted from Google Maps. 

16. Akin to search and rescue missions, it is assumed that the MTVRs do not 
have any prior knowledge of the location of isolated victims.  

17. It is assumed that DDTs will begin to return to the LDC for refueling once 
they have consumed 70% of their available fuel (i.e., 30% of the fuel 
capacity is sufficient for the DDTs to travel back to the nearest LDC for 
refueling).  

18. It is assumed that DDTs do not consume fuel when they are being 
resupplied or refueled. 

19. It is assumed that the DDTs will return to the closest LDCs for refueling 
or reloading at the point when they run low on fuel or out of supplies. It is 
further assumed that they will not resupply any disaster victims when they 
are traveling back to refuel or reload supplies.  

20. It is assumed that the resupply operations are conducted non-stop during 
the 72 hours due to the urgency of the mission. 
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5. LDCs 

The LDCs are used to store relief supplies; with reference to Section B of this 

chapter, they perform the function of “Provide Storage.” They may be sited at the 

location of existing warehouses, or in improvised areas such as parks or open spaces 

closer to the affected victims. The DDTs will refuel and stock up at the LDCs when they 

run out of either gas or relief supplies. To model the refueling or resupply behavior, 

MANA’s state, sensor, and weapon properties were used. At the beginning of the 

scenario, all the DDTs are fully loaded and are invisible to the LDCs. When a DDT only 

has 30% of fuel remaining, or is out of relief supplies, it undergoes a state change and 

become visible to the LDCs. This is called the “fuel out” state in MANA, but we refer to 

it as the “fuel low” state throughout this thesis. When a visible DDT is within range of an 

LDC, the LDC will “shoot” it with a special (non-lethal) weapon. This weapon does not 

kill or injure the DDT; the weapon merely triggers the “shot at” state change in the DDT. 

In this state, the DDT enters a delay (0.5 hours) that captures the time taken for it to 

receive its restock (reload of ammunition). This duration does not depend on the 

remaining supplies that it may still have on board; the resupply duration is assumed to be 

a constant 0.5 hours. Additionally, the LDC has a short-range refueling capability that 

causes the DDT it is servicing to receive its full tank of fuel. Upon the expiration of the 

time delay, the DDT resumes its default state in which it returns to its mission of locating 

victims and supplying them. 

6. DDTs 

The DDTs perform the function of “Transport Supplies” as described in Section B 

of this chapter. In this thesis, a DDT agent represents a vehicle convoy that searches for 

and distributes relief supplies to isolated victims. The DDTs use MTVRs to deliver 

supplies to these victims, and they travel in convoys varying from two to six MTVRs. In 

Section G.4.8, it was mentioned that the carrying capacity of each MTVR for relief 

supplies is six tons. As such, a DDT agent may carry 12 tons to 36 tons of relief supplies 

when fully loaded, depending on the number of vehicles in a convoy. In all, there are 30 

MTVRs available for the MEU to deploy to conduct resupply operations. As the 



 48

simulation runs, the DDTs consume fuel as they travel around the disaster area searching 

for isolated victims. The speed of the DDT depends on the convoy length; the longer the 

convoy length, the slower the speed to maintain convoy integrity (USMC 2017a). When a 

victim cluster falls within the sensor range of the DDTs and is seen by them, the DDTs 

will deviate from their predefined search waypoints and “shoot” the victim cluster with 

ammunition, simulating the provision of relief supplies to isolated victims. The DDTs can 

only resupply one victim cluster at a time. While they are supplying relief victims, the 

DDTs remain in place for 0.5 hours. The default state of the DDT represents when it has 

fuel or relief supplies and is on mission. In this state, it is represented in the simulation 

animation screen by a blue truck icon. Its icon turns purple when it has 30% of fuel 

remaining (triggering a state change) and turns red when it is out of relief supplies. In the 

yellow or red state, its behavior will be to move to the nearest LDC to be refueled and 

restocked. In the simulation, it moves in a straight line, perhaps through cross-country 

terrain, to the closest LDC, emphasizing the need to be refueled or restocked. After it is 

refueled or restocked, the DDT will return to its previous location to continue to search 

for victims in the vicinity. 

7. Isolated Victims 

Isolated victims may be caught in landlocked areas in the aftermath of a disaster, 

and thus be unable to collect supplies from local distribution centers. The mission of the 

DDTs is to search for these isolated victims in order to provide them with relief supplies. 

In the model, there are 100 clusters of isolated victims randomly distributed across three 

areas in the map. Each cluster represents 40 victims. The victims are unable to move to 

shelters due to a lack of supplies and inaccessible roads. As each victim requires 50kg of 

supplies per three days, each cluster will require 2,000kg (2 metric tons) of supplies. In 

their default state, the isolated victims are red in color and have a concealment value of 

50% to simulate the DDTs searching for the victims. When they are supplied by a DDT, 

they enter the “shot at” state, in which they turn green in color and become invisible to 

the DDTs so that the DDTs do not waste time re-encountering the same victim. As 

mentioned previously, isolated victims may also see other isolated victims within a user-

defined local neighborhood. When a resupplied victim encounters a yet-to-be resupplied 
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victim, the simulated interaction captures that the resupplied victim will be able to inform 

both the nearby unsupplied victims and the DDTs about the presence of the other, which 

causes the concealment value of the yet-to-be resupplied victim to drop to 0% as that 

victim tries to become more visible to the DDTs in order to be resupplied. When the 

concealment value drops to 0%, the color of the isolated victim changes from red to 

yellow. 
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IV. MODEL EXPLORATION 

A. INTRODUCTION 

The MOEs directly address the research questions stated in Chapter I, Section F; 

one or more measures of performance (MOPs) may be related to the achievement of a 

particular MOE (Hernandez 2016). As such, each MOP is a quantitative assessment of 

the performance of a particular capability toward meeting stakeholder needs. A robust 

DOE was used to vary input factors used in numerous simulation runs to generate data. 

Input factors explored in this study include OE-focused assets and driver behavior. The 

JMP Pro 12 statistical discovery software from the SAS Institute Inc. was used to derive 

important insights regarding the impact of input factors on MOEs, MOPs, and the 

interactions between those factors. 

B. MOES AND MOPS 

MOEs are measures or metrics designed to correspond to the achievement of 

mission objectives and achievement of desired results. Good MOEs are relevant, linked 

to the strategic end state, precisely defined, observable, and quantifiable . With respect to 

the research questions listed in Chapter I, Section F, the associated MOEs are defined as 

follows: 

1. Throughput of relief supplies to isolated victims 

2. Timeliness in delivering relief supplies to isolated victims 

3. Fuel efficiency of each capability instantiation 

MOPs are measures of a system’s performance expressed as a distinctly 

quantifiable performance feature and are logically linked to the performance or objective 

that is to be realized (Hernandez 2016). Hence, MOPs must be relevant to the MOEs. In 

addition, the data required for each MOP in this study must be obtained through the 

MANA simulation model. Table 9 lists the MOEs, MOPs, and data requirements used in 

this thesis. The objective of each data requirement is also listed as more is better (MIB), 

or less is better (LIB). 



 52

 MOEs, MOPs, and Data Requirements. Table 9.

MOE MOPs Data Requirements 
MOE 

Objective

1. Throughput of 
relief supplies to 
isolated victims 

1. Number of victim 
clusters resupplied 

a. Total number of victim 
clusters resupplied at the 
end of three days 

MIB 
2. Probability of 
resupplying victim 
clusters 

b. Number of cases where 
50% of victim clusters 
were resupplied 
c. Number of cases where 
75% of victim clusters 
were resupplied 
d. Number of cases where 
100% of victim clusters 
were resupplied 

2. Timeliness in 
delivering relief 
supplies to isolated 
victims 

3. Lower bound on 
the time taken to 
resupply victim 
clusters 

e. Time taken to resupply 
50% of victim clusters 

LIB 
f. Time taken to resupply 
75% of victim clusters 
g. Time taken to resupply 
100% of victim clusters 

3. Fuel efficiency of 
each capability 
instantiation 

4. Fuel consumed 
a. Total number of victim 
clusters resupplied at the 
end of three days 

MIB 

5. Fuel consumed per 
victim cluster 
resupplied 

a. Total number of victim 
clusters resupplied at the 
end of three days 

6. Lower bound on 
the fuel consumed to 
resupply victim 
clusters  

e. Time taken to resupply 
50% of victim clusters 
f. Time taken to resupply 
75% of victim clusters 
g. Time taken to resupply 
100% of victim clusters 

 

MOPs 1 and 2 together define MOE 1. MOP 1 measures the total number of 

victim clusters who were resupplied at the end of three days. This is a direct measurement 

of the effectiveness of each capability instantiation toward the throughput of relief 

supplies to disaster areas; the more victim clusters resupplied the better. MOP 2 measures 

the probability of each capability instantiation in resupplying: (1) 50%, (2) 75%, and (3) 

100% of victim clusters. In addition to the number of victim clusters resupplied, it is also 
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important to measure the likelihood that each capability instantiation can resupply a 

certain percentage of victim clusters. The higher the probability of resupplying a certain 

percentage of victim cluster, the better. 

MOP 3 defines MOE 2. It measures the lower bound time to resupply: (1) 50%, 

(2) 75%, and (3) 100% of victim clusters. HADR resupply operations are time-critical. 

Ensuring victim survivability entails measuring the timeliness in resupplying the victim 

clusters, and thus, a relevant MOE as well. The less time taken to resupply a certain 

percentage of victim clusters, the better. 

MOPs 4, 5, and 6 define MOE 3. MOP 4 is a proxy measurement of the quantity 

of fuel utilized by the DDTs in carrying out resupply operations. As defined by Keeny 

and Raiffa (1993, 55), “a proxy attribute is one that reflects the degree to which an 

associated objective is met but does not directly measure an objective.” As the DDTs are 

refueled as well when they return to the LDCs in an “ammunition out” state, it is difficult 

to measure the exact quantity of fuel used because MANA is unable to account for the 

quantity of fuel that the DDTs receive in these instances. However, MANA is able to be 

configured to provide requirement (a), the total number of victim clusters resupplied at 

the end of three days. The fuel consumed can then be calculated by taking the product of 

the amount of time that the DDTs consume fuel with its fuel consumption rate in gallons 

per hour (GPH). The amount of time that the DDTs consume fuel is obtained by 

subtracting the amount of time that they are stationary from the amount of time that are 

moving. The amount of time that the DDTs are stationary is calculated by taking the 

product of the number of victim clusters resupplied, amount of time taken to resupply 

each victim cluster (0.5 hours), and whether or not it consumed fuel while resupplying 

victim clusters (binary variable “1” or “0”). The maximum amount of time that the DDTs 

are moving is calculated by taking the product of the number of MTVRs utilized and total 

operational time (72 hours). In mathematical notation, 

FuelConsumed=[(No.DDTsUtilized×72)-(No.VictimsResupplied×0.5×ReduceIdleTime)]×GPH  
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Hence, the total number of victim clusters resupplied at the end of three days can 

be used to calculate a proxy measurement for the quantity of fuel utilized; the less fuel 

consumed, the better. However, less fuel consumed may not necessarily indicate success 

for the resupply operation; it is more meaningful to measure the fuel utilized per victim 

cluster resupply in order to measure fuel efficiency. This is done in MOP 5, which is a 

proxy measurement for the amount of fuel utilized per victim cluster resupplied. The less 

fuel consumed per victim cluster resupplied, the better the fuel efficiency. Lastly, MOP 6 

measures the lower bound fuel utilized to resupply: (1) 50%, (2) 75%, and (3) 100% of 

victim clusters; the less fuel consumed, the better the fuel efficiency. 

C. INPUT FACTORS 

Experiment design factors consist of simulation input parameters of interest, or 

functions of simulation inputs. The set of design factors represents the set of inputs that 

are varied via the experimental design. Generally, the input factors can be grouped into 

two categories: (1) controllable and (2) uncontrollable.  

Controllable factors, or decision factors, are factors that can be changed or 

influenced by decision makers. On the other hand, uncontrollable factors, or noise 

factors, are those over which decision makers have little or no control (Kleijnen et al. 

2005). Both decision and noise factors are included in the simulation design because both 

have an impact on output statistics, including measures of variability, which can be used 

as an indicator of risk. The decision and noise factors are listed in Table 10. Factors 

highlighted in blue are the decision factors, and factors highlighted in red are the noise 

factors. 
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 Decision and Noise Factors. Table 10.

Factor Factor Type Min Max Description 
Operational 
Plan 

Categorical / 
Discrete 

1 12 The number of MTVRs, and 
convoy length of each DDT, 
used by the MEU to conduct 
HADR resupply operations. 
The different combinations 
affect the convoy speed and the 
amount of relief supplies that a 
DDT convoy is able to carry. 

Reduce Idle 
Time 

Categorical / 
Discrete (Binary) 

0 1 A binary variable to determine 
if the MEU adopts policies that 
aim to reduce idling time. If 
adopted, the MTVRs do not 
consume fuel when they are 
unloading relief supplies to 
victims. 

Fuel Efficiency  Continuous 3.15 5.778 The fuel efficiency of MTVRs 
is affected by employing: (1) 
trained drivers, (2) hybrid 
technologies, and (3) follower 
vehicle technologies. 

Communication 
Devices 

Continuous 3,000 10,000 The employment of 
communication devices to 
allow DDT convoys to see 
beyond the line of sight in the 
search for isolated victims. 

Concealment  Continuous 0.25 0.75 The detectability of isolated 
victims. 

Trafficability Continuous 0.5 0.75 The trafficability of roads in the 
area of operations. 

 

1. Decision Factors 

a. Operational Plan 

In Chapter III, Section G.6, it was stated that there are 30 MTVRs available for 

the MEU to deploy to conduct resupply operations. The MEU commander may choose to 

deploy all or a partial number of MTVRs to conduct resupply operations. In this thesis, 

the MEU commander has a choice of deploying 10, 15, 20, 25, or 30 MTVRs for 

resupply operations. In addition, it was mentioned that the DDTs travel in convoys 
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varying from two to six MTVRs. As the carrying capacity of each MTVR for relief 

supplies is six tons, the amount that a fully loaded DDT may carry varies from 12 tons to 

36 tons, depending on the convoy length that the MEU commander chooses to use. The 

length of convoy impacts the: (1) speed of convoy and (2) amount of relief supplies 

carried by each DDT. The longer the convoy, the slower the convoy speed; this is USMC 

SOP to maintain convoy integrity (USMC 2017b). More relief supplies can be carried 

and hence distributed by longer convoys, however. In addition, longer convoys are also 

more effective in locating isolated victims, as: (1) they are able to spend more time 

scanning the environment and (2) they have more manpower to scan for isolated victims. 

This thesis studies 12 possible operational plans generated by the combination of the two 

decision factors. The operational plans and their respective data are listed in Table 11. It 

is to be noted that due to vehicle constraints, eight operational plans (1, 2, 3, 4, 6, 7, 8, 

12) will not cover all pre-planned routes, while four operational plans (5, 9, 10, 11) will 

cover all pre-planned routes. 

 Operational Plan, Number of MTVRs Used, and Length of DDT Convoy. Table 11.

Operational 
Plan 

Number of 
MTVRs 

Used 

Length 
of DDT 
Convoy 

Number 
of DDT 
Agents 

Convoy 
Speed 
(MPH) 

Relief 
Supplies 
per DDT 

(Ton) 

Sensor 
Range 
Factor 

1 10 2 5 30 12 0.80 

2 10 5 2 15 30 0.95 

3 15 3 5 25 18 0.85 

4 15 5 3 15 30 0.95 

5 20 2 10 30 12 0.80 

6 20 4 5 20 24 0.90 

7 20 5 4 15 30 0.95 

8 25 5 5 15 30 0.95 

9 30 2 15 30 12 0.80 

10 30 3 10 25 18 0.85 

11 30 5 6 15 30 0.95 

12 30 6 5 10 36 1.00 
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b. Reduce Idle Time 

Chapter III, Section D.1 explored the adverse impact of idling time on fuel 

efficiency. Two instantiations were generated to explore this behavior. If the drivers do 

not reduce idling time, the DDTs continue to consume fuel when they are resupplying 

affected victims. If the drivers reduce idling time, the DDTs will not consume fuel when 

they are resupplying affected victims. The “My Fuel Usage Rate” parameter is utilized to 

simulate whether the DDTs continue to consume fuel or not in the resupply “taken shot” 

state. The two instantiations and their data are listed in Table 12. 

 Instantiations for Reduce Idle Time. Table 12.

Instantiatio
n 

Consume Fuel During Resupply 

0 Yes 

1 No 

 

c. Fuel Efficiency 

Chapter III, Section G.4 states that the default fuel efficiency of the MTVR is 4.5 

MPG. In this thesis, the employment of (1) trained drivers, (2) hybrid technologies, and 

(3) follower vehicle technologies will cause this default value, either adversely or 

positively, to range from 3.15 MPG to 5.778 MPG. The final fuel efficiency value is 

obtained by taking the product of the MPG multipliers for employing trained drivers, 

hybrid technologies and follower vehicle technologies, with the default fuel efficiency. In 

mathematical notation, the final fuel efficiency can be calculated from 

AllMPGMultipliers

FinalFuelEfficiency DefaultFuelEfficiency   

The lower bound is derived from the employment of 0% trained drivers, 0% 

hybrid technologies, and 0% follower vehicle technologies, and this results in a final 

MPG of 0.7 1.0 1.0 4.5 3.15     MPG. Similarly, the upper bound is derived from the 

employment of 100% trained drivers, 100% hybrid technologies, and 100% follower 
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vehicle technologies, and this results in a final MPG of 1.2 1.07 4.5 5.778     MPG. 

Descriptions of the factors affecting fuel efficiency follow. 

(1) Employing Trained Drivers 

Chapter III, Section D.2 explored the benefits of efficient driving techniques on 

fuel efficiency; fuel economy differences from driving behaviors may vary by up to 

nearly 30 percent between different drivers (Kurani et al. 2015). In a MEU, trained or 

incidental operators are allowed to operate ground vehicles. A trained driver is one who 

has attended specialized motor training courses and is identified with the 353X motor 

transport driver designation; an “incidental operator is qualified to drive, but driving may 

not be his specialty in the USMC” (Peters 2016, 39). Literature survey indicates that 

“incidental vehicle operators are less likely to comply with best driving practices and are 

more prone to ‘gunning the vehicle’ during short movements and hard braking” (Peters 

2016, 39). Hence, the MPG multiplier ranges from 0.7 for 0% employment of trained 

drivers, to 1.0 for 100% employment of trained drivers. 

(2) Employing Hybrid Technologies 

Chapter III, Section D.3 explored the employment of hybrid technologies that are 

more fuel efficient; hybrid MTVRs may be able to improve fuel economy of the MTVR 

by up to 20% (Oshkosh Defence 2017). By replacing a percentage of the current MTVR 

fleet with hybrid variants, the MEU may be able to achieve greater fuel efficiency. The 

MPG multiplier ranges from 1.0 for 0% employment of hybrid technologies to 1.2 for 

100% employment of hybrid technologies. 

(3) Employing Follower Vehicle Technologies 

Chapter III, Section D.4 looked at the use of UGSs that would be employed as 

follower vehicles for resupply operations. Fuel savings of up to 7% could be achieved 

through efficiencies such as automated driving, weight reduction, and reduced idling 

time. The MPG multiplier ranges from 1.0 for 0% employment of follower vehicle 

technologies, to 1.07 for 100% employment of follower vehicle technologies. 
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d. Communication Devices 

This factor defines the employment of communication devices such as radio sets 

and cellphones to enable DDTs to send information on the location of isolated victims to 

each other, making the search for isolated victims easier and more effective. By 

employing communication devices, the sensor range of the DDTs will vary from the 

default value of 3,000m to 10,000m.  

2. Noise Factors 

a. Concealment 

This factor defines the detectability of the isolated victims, as they may be 

obscured by building rubble and forested areas. The “Personal Concealment per 

Detection Event” parameter is used to determine the concealment factor, and it varies 

from 0.25 to 0.75. Unlike sensor range, the concealment factor does not vary depending 

on the speed of the DDT convoys. 

b. Trafficability 

This factor defines how easy is it for the DDTs to travel on roads, as roads may be 

degraded or damaged due to the tsunami and earthquakes. The “Going” value in the 

scenario map editor in MANA is varied from 0.5 to 0.75 to simulate the various degrees 

of trafficability on both road and dirt. 

D. EXPERIMENTAL DESIGN 

As the design factors are both categorical and binary, this thesis used the NOB 

design technique developed by Vieira Jr. et al. (2013) to generate the design points. A 

design point is a unique combination of input factor values. The NOB design builds on 

the work of Cioppa (2002) and MacCalman (2013) to generate NOLHs for mixed 

designs. By using nearly orthogonal design columns, the correlation between factors 

remains low (ρ ≤ 0.05), which reduces the error in the estimates of the parameter 

coefficients in a linear regression model. Similarly, the NOB design allows for the 

construction of orthogonal designs for design factors that are binary, discrete, or 
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continuous, and which have different number of levels by using a novel linearization of 

the correlation calculation (Vieira Jr. et al. 2013). 

Vieira et al. (2013) use stacking to ensure that the number of objects for each 

factor in each of its levels is equal so as to achieve balance. Balance is important because 

it allows for correct analysis of heteroscedastic experiments, such as the case in this 

research, where the design factors all have different variabilities from each other. Similar 

to the NOLH design technique, the NOB algorithm is also able to “efficiently explore the 

design space of a large number of variables in a relatively small number of runs using 

nearly orthogonal design columns” (Hinkson 2010, 39). While a central composite 

technique may also be used to generate the design points, the resulting design only 

includes extreme and center points. As a result, it is unable to fully explore the 

experimental space. By utilizing a NOB design, this thesis is able to construct the 

experiment space using 256 design points that are systematically and uniformly scattered 

throughout the design space (i.e., space-filling). The NOB design hence fulfills the 

desired balance and space-filling properties that good experimental designs should 

possess, and is suitable for this thesis where it is difficult to discern between the input 

factors and their interactions toward the effectiveness of HADR resupply operations. 

A Microsoft Excel spreadsheet tool developed by Vieira Jr. (2012) from the 

Technological Institute of Aeronautics, Brazil, was used to generate the NOB design. 

This spreadsheet tool is able to generate designs for up to 150 factors with 256 design 

points (Vieira Jr. 2012). To this end, the spreadsheet tool generated a 256-point design 

for the input factors in Table 10. The scatterplot matrix of the experimental design is 

shown in Figure 19, with each box depicting the pairwise correlation between each pair 

of input factors. It is apparent from Figure 19.  that most of the boxes are filled with data 

points, demonstrating the space-filling property of the NOB design. Boxes that just show 

straight lines correspond to input factors that are categorical or binary in nature. Even so, 

the design points span across their respective range of values and exhibit no signs of 

linear dependence. Indeed, the highest pairwise correlation between any two factors is 

0.0256, as shown by the pairwise plot of variables in Figure 19.  This ensures that the 

effects of confounding are minimized in the corresponding analysis of the data. We treat 
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the operational plan as a discrete factor for the purposes of constructing the design, but as 

a categorical factor when conducting the analysis. 

 

Figure 19.  Scatterplot Matrix of the Experimental Design. 

E. RUNNING THE EXPERIMENTS 

1. Arithmetic Calculations 

Arithmetic calculations were performed to obtain several analytical solutions in 

order to determine the plausibility of the simulation results. These analytical solutions do 

not account for stochastic elements of the HADR resupply system and operational 

scenario, such as locations and probabilities of detection of isolated victims, trafficability 

of roads, range of communication devices, and time taken to resupply victim clusters. In 

this thesis, mathematical calculations were performed to determine bounds on the number 
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of victim clusters resupplied. Across all operational plans, assuming a constant fuel 

consumption of 4.5 MPG and fuel capacity of 78 gallons per MTVR, the maximum 

distance that a MTVR can travel before it has to refuel is 351 miles. By extension, the 

maximum distance that a DDT agent, regardless of convoy size, can travel before 

refueling is also 351 miles as the MTVRs travel together in a convoy. The maximum 

distance that a DDT agent can travel within the scenario simulation time is the product of 

its convoy speed and 72 hours. In this way, the number of trips that a DDT agent can 

make within the scenario simulation time of 72 hours can be calculated by dividing the 

maximum distance that it can travel within the scenario simulation time by the maximum 

distance that it can travel before refueling. With this information, the expected number of 

victim clusters that an operational plan will be able to resupply can be calculated by 

taking the product of (1) victim detectability rate, (2) number of trips made within 72 

hours, (3) number of DDT agents, and (4) number of “ammunition” shots per DDT agent. 

In the employment of operational plan 1 (see Table 11 for details on input values), 

there are five DDT convoys of  two MTVRs each. As they travel at a speed of 30 MPH, 

they will be able to each cover a total of 30 72 = 2,160 miles within the scenario 

simulation time of 72 hours. This translates to each DDT convoy being able to make 

2,160 351 = 6.15 (≈ 6) trips within 72 hours. Assuming a 50% victim detection rate, 

negligible loading and resupply time, and carrying capacity per DDT of 12 tons (six shots 

of “ammunition”), operational plan 1 will be able to resupply 0.5 6 5 6   = 90 victim 

clusters. 

In the employment of operational plan 2, there are two DDT convoys of five 

MTVRs each. As they travel at a speed of 15 MPH, they will be able to each cover a total 

of 15 72 = 1,080 miles within the scenario simulation time of 72 hours. This translates to 

each DDT convoy being able to make 1, 080 351 = 3.07 (≈ 3) trips within 72 hours. 

Assuming a 50% victim detection rate, negligible loading and resupply time, and carrying 

capacity per DDT of 30 tons (15 shots of “ammunition”), operational plan 2 will be able 

to resupply 0.5 3 2 15   = 45 victim clusters. 
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The same methodology was used to calculate the analytical solutions for all 

operational plans, and the result is shown in Table 13. For cases where the calculated 

absolute number of victim clusters resupplied was more than 100, the maximum number 

of victim clusters in the simulation. In reality, a higher absolute number of victim clusters 

resupplied may indicate that the particular operational plan may be able to resupply all 

victims in a time of less than 72 hours. 

 Arithmetic Calculations for Number of Victims Resupplied. Table 13.

Operational 
Plan 

Number 
of 

MTVRs 
Used 

Length 
of DDT 
Convoy

Number 
of DDT 
Agents

Convoy 
Speed 
(MPH)

Relief 
Supplies 
per DDT 

(Ton) 

No. of 
Victim 

Clusters 
Resupplied 
(Absolute) 

No. of 
Victim 

Clusters 
Resupplied 
(Corrected)

1 10 2 5 30 12 90 90 

2 10 5 2 15 30 45 45 

3 15 3 5 25 18 112.5 100 

4 15 5 3 15 30 67.5 67.5 

5 20 2 10 30 12 180 100 

6 20 4 5 20 24 120 100 

7 20 5 4 15 30 120 100 

8 25 5 5 15 30 112.5 100 

9 30 2 15 30 12 270 100 

10 30 3 10 25 18 225 100 

11 30 5 6 15 30 135 100 

12 30 6 5 10 36 90 90 

 

An analysis of the arithmetic calculations indicates that, within the existing 

operational plans considered in this thesis, the plans that utilize a minimum of 20 MTVRs 

have the greatest chance of success. An additional insight gleaned was that the 

combination of convoy speed and operational plan has a larger influence on number of 

victims resupplied, than the amount of relief supplies carried by each DDT convoy. This 

is evident when comparing within the operational plans that utilized the same number of 

MTVRs, such as: (1) operational plans 1 and 2; (2) operational plans 3 and 4; (3) 
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operational plans 5, 6 and 7; and (4) operational plans 9, 10, 11 and 12. The operational 

plans that deployed shorter DDT convoys at faster speeds were more effective than their 

counterparts that deployed larger DDT convoys at slower speeds. Indeed, such is the joint 

importance of speed and convoy size that operational plan 1, which only utilizes 10 

MTVRs travelling at 30 MPH, is able to match the performance of operational plan 12, 

which utilizes 30 MTVRs travelling at 10 MPH. 

From these 12 operational plans, it is not possible to determine how much of the 

performance gains for shorter DDT convoys are due to speed alone, and how much are 

due to the fact that there are a greater number of convoys operating independently. This 

could be examined in future experiments 

2. First Phase Experiment 

A first phase experiment was performed as a means to “screen” the input factors 

quickly and efficiently, and isolate factors that dominate. This was carried out by 

performing 40 replications on the 256-point design matrix, generating a total of 10,240 

simulation runs. Each replication used a random starting seed. The first phase experiment 

took about four hours to complete on a high performance computing cluster. To 

investigate the effects of the input factors on the data response, we first summarize the 

data by computing the mean responses over all replications for each of the 256 design 

points.  We then determine the most important factors using second-order stepwise 

regression models that considered all main, quadratic, and two-way interaction terms. 

a. Number of Victim Clusters Resupplied 

The first data response to be investigated is the number of victim clusters 

resupplied, as it addresses the MOE of how effective is each capability instantiation 

toward the throughput of relief supplies to disaster areas. The summary of fit for the 

regression model is shown in Figure 20. ; it shows a high adjusted R2 value of 0.98. This 

means that the fitted regression model is suitable for analyzing the number of victims 

resupplied. 

 



 65

 

Figure 20.  Summary of Fit for Number of Victim Clusters Resupplied 
(First Phase Experiment). 

This is confirmed by the “actual vs. predicted” plot as shown in Figure 21, where 

we see that most of the data lie close to the fitted line, with narrow confidence bands. 

 

Figure 21.  Actual vs. Predicted Plot for Number of Victim Clusters Resupplied 
(First Phase Experiment). 

The prediction profiler for the regression model can be used interactively to show 

the effect that the respective input factors have on the number of victim clusters 

resupplied; a snapshot of the profiler is shown in Figure 22.  Initial analysis shows that 

the “Operational Plan” and “Communication Devices” factors dominate the other factors 

in terms of number of victims resupplied. This is further illustrated by the effect summary 

in Figure 23, which shows that the aforementioned two factors indeed dominate all other 

factors and interactions. The model has nine terms: five main effects, two quadratics, and 

two interaction terms. Simplifying it to a model that includes only the four terms 
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associated with “Operational Plan” and “Communication Devices” would still achieve a 

high adjusted R2 value of 0.96. Through the rest of this thesis, we report the models that 

come from fitting stepwise regression without any further simplification because we are 

focusing on the largest effects. 

 

Figure 22.  Prediction Profiler for Number of Victim Clusters Resupplied 
(First Phase Experiment). 

 

Figure 23.  Effect Summary for Number of Victim Clusters Resupplied 
(First Phase Experiment). 

b. Number of Times That the DDT Convoys Were in a “Fuel Out” State 

In this modeling effort, we attempted to use weapons in MANA as counting 

mechanisms. As one example, in order to acquire a count of the total number of times 

that DDT agents entered the “fuel out” state, each DDT was given a special weapon that 

was only capable of shooting at a particular class of dummy target agent when it first 

entered the “fuel out” state.  This particular dummy target agent class was only visible to 

a DDT agent entering the “fuel out” state, and was configured such that it would never 

die, it would just keep accruing hits.  The weapon that the DDT used for this had only 
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one shot of ammunition in it, with a long reload time, such that it would not fire more 

than one shot of this type on the same instance of the “fuel out” state. Using this method, 

we intended to interpret the total number of hits on the target agent as the total number of 

times that DDT agents entered the “fuel out” state. However, we became aware of two 

examples of misfiring that made the counter-based metrics in MANA to be unreliable for 

analysis. Instead, we use an analytically-derived measure as described in Chapter IV, 

Section B for fuel consumption. Fortunately, the total number of victims served and the 

probability of serving 50%, 75%, and 100% of the victims, as well as the time required to 

serve these percentages, were not affected by this error. 

3. Second Phase Experiment 

The first phase experiment identified “Operational Plan” as a strongly dominant 

factor. This can be explained by noting that this factor controls the number of MTVRs 

used in a simulation run, as well as the speed and sensor range of the MTVRs; the more 

MTVRs used and the greater distance they travel, the more victims one can expect to be 

resupplied. At the same time, the more MTVRs used and the faster they travel, the more 

fuel will be consumed. In order to achieve a more balanced analysis, the second phase 

experiment will only consider operational plans that use 30 MTVRs; this will reduce the 

number of operational plans to four. In doing so, the effect of the number of MTVRs used 

will be removed from the model. Instead, the effect of DDT convoy length will be 

explored in greater detail, since convoy length affects: (1) speed, (2) sensor range factor, 

(3) supplies carried, and (4) number of DDT agents used to represent the 30 MTVRs. 

With an equal number of MTVRs for all simulation runs, the results for the second phase 

experiment should be less biased toward the choice of operational plan and provide more 

insights into which OE factor contributes more toward increasing operational reach. The 

four operational plans to be used in the second phase experiment are listed in Table 14. 
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 Operational Plans Used in Second Phase Experiment. Table 14.

Operational 
Plan 

Number of 
MTVRs 

Used 

Length 
of DDT 
Convoy 

Number 
of DDT 
Agents 

Convoy 
Speed 
(MPH) 

Relief 
Supplies 
per DDT 

(Ton) 

Sensor 
Range 
Factor 

1 30 2 15 30 12 0.80 
2 30 3 10 25 18 0.85 
3 30 5 6 15 30 0.95 
4 30 6 5 10 36 1.00 

 

The second phase experiment was carried out by performing 100 replications on 

the 256-point design matrix, generating a total of 25,600 simulation runs. Each 

replication used a random starting seed, and the second phase experiment took about nine 

hours to complete on a high performance computing cluster. 
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V. DATA ANALYSIS 

The second phase experiment involved a total of 25,600 simulation runs and 

generated a large amount of data. Similar to the first phase experiment, partition trees and 

second-order stepwise regression models that considered all main, quadratic, and two-

way interaction terms were once again used to investigate the effects of the input factors 

on the MOEs. 

A. DATA SUMMARY OF SECOND PHASE EXPERIMENT 

A basic statistical summary of the data requirements listed in Table 9 is presented 

in this section. Preliminary analysis of the raw data will provide insights into the validity 

of the data prior to subsequent detailed analysis. The histograms presented in this section 

contain data from all 25,600 simulation runs to show the range of all simulation results, 

and summarized data that show the range of potential outcomes for the 256 design points. 

1. Number of Victim Clusters Resupplied 

Out of 25,600 simulation runs, the maximum number of victim clusters resupplied 

is 100, and the minimum number of victim clusters resupplied is 12. The histogram is 

shown in Figure 24.  

 

Figure 24.  Histogram for Number of Victim Clusters Resupplied 
(Second Phase Experiment). 
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Raw data such as those in Figure 24.  can be used to check the overall range of 

results, but we are also interested in the behavior for each design point. Summarizing the 

data over replications allows us to look at the average number of victim clusters 

resupplied by design point. To this end, each design point for the number of victim 

clusters resupplied is summarized by its mean, and the histogram shown in Figure 25.  

indicate a wide range of outcomes, with a minimum mean number of 50.45 victim 

clusters resupplied and a maximum mean number of 97.31 victim clusters resupplied. 

 

Figure 25.  Histogram for Mean Number of Victim Clusters Resupplied 
(Second Phase Experiment). 

2. Number of Cases Where 50% of Victim Clusters Were Resupplied 

Out of 25,600 simulation runs, the number of cases where 50% of victim clusters 

were resupplied is 25,138, so it is achieved in the vast majority of simulation runs. For 

each design point, the proportion of replication where 50% of victim clusters are 

resupplied is computed. The histogram in Figure 26 shows that the mean probability of 

success in resupplying 50% of victim clusters is 0.98, but the least effective design point 

only achieved this threshold in 56 of the 100 replications. 
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Figure 26.  Histogram for the Estimated Probability that 50% of Victim  
Clusters Were Resupplied (Second Phase Experiment). 

3. Number of Cases where 75% of Victim Clusters Were Resupplied 

Using the approach of Section V.A.2 yields the estimated probability of 

resupplying 75% of victim clusters for each design point, and the histogram is shown in 

Figure 27. It shows that the mean probability of success in resupplying 75% of victim 

clusters is 0.70, but the least effective design point only achieved this threshold in none 

of the 100 replications. 

 

Figure 27.  Histogram for the Estimated Probability that 75% of Victim Clusters 
Were Resupplied (Second Phase Experiment). 

4. Number of Cases where 100% of Victim Clusters Were Resupplied 

Lastly, a similar approach yields the estimated probability of resupplying 100% of 

victim clusters for each design point, and the histogram is shown in Figure 28.  It shows 

that the mean probability of success in resupplying 100% of victim clusters is only 0.02. 
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This illustrates the difficulty of a resupply operation in an HADR scenario, mainly due to 

the dispersion of victim clusters, and difficulty in searching for them. 

 

Figure 28.  Histogram for the Estimated Probability that 100% of Victim Clusters 
Were Resupplied (Second Phase Experiment). 

5. Lower Bound for Time Taken to Resupply 50% of Victim Clusters 

Out of 25,600 simulation runs, there were 462 cases where less than 50% of 

victim clusters were resupplied; it is evident that these cases take more than 72 hours to 

resupply 50% of victim clusters. For each of these 462 cases, we replace the missing 

value for the time taken to resupply 50% of victim clusters with 8,640, the number of 

time steps that it takes to represent 72 hours. Having done that, the histogram is shown in 

Figure 29.  The reader may notice a small spike to the right tail of the histogram: these 

are the 462 cases that took more than 72 hours to resupply 50% of victim clusters. 

 

Figure 29.  Histogram for Lower Bound on Time Taken to Resupply 50% of  
Victim Clusters (Second Phase Experiment). 
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Each design point is then summarized by its mean, and the histogram of these 256 

means, each of which is an estimate of the time taken to resupply 50% of victim clusters, 

is shown in Figure 30.  The results indicate a wide range of outcomes, with a minimum 

mean time taken of 9.89 hours and a maximum mean time taken of 60.28 hours. 

 

Figure 30.  Histogram for Mean Lower Bound on Time Taken to Resupply 50% 
of Victim Clusters (Second Phase Experiment). 

6. Lower Bound for Time Taken to Resupply 75% of Victim Clusters 

Out of 25,600 simulation runs, there were 7,746 cases where less than 75% of 

victim clusters were resupplied; it is evident that they take more than 72 hours to 

resupply 75% of victim clusters. For each of these 7,746 cases, we replace the missing 

value for the time taken to resupply 75% of victim clusters with 8,640, the number of 

time steps that it takes to represent 72 hours. Having done that, the histogram is shown in 

Figure 31.  The reader may notice that the spike in the right tail of the histogram is now 

even higher, reflecting the increased number of cases where it took more than 72 hours to 

resupply 75% of victim clusters. 

 

Figure 31.  Histogram for Lower Bound on Time Taken to Resupply 75% of 
Victim Clusters (Second Phase Experiment). 
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Each design point is then summarized by its mean, and the histogram of these 256 

means, each of which is an estimate of the time taken to resupply 75% of victim clusters, 

is shown in Figure 32.  The results indicate a wide range of outcomes, with a minimum 

mean time taken of 16.79 hours and a maximum mean time taken of 72.00 hours. 

 

Figure 32.  Histogram for Mean Lower Bound on Time Taken to Resupply 75% of 
Victim Clusters (Second Phase Experiment). 

7. Lower Bound for Time Taken to Resupply 100% of Victim Clusters 

Out of 25,600 simulation runs, there are 25,007 cases where less than 100% of 

victim clusters were resupplied; it is evident that they take more than 72 hours to 

resupply 100% of victim clusters. For each of these 25,007 cases, we replace the missing 

value for the time taken to resupply 75% of victim clusters with 8,640, the number of 

time steps that it takes to represent 72 hours. Having done that, the histogram is shown in 

Figure 33.  The reader may notice that almost all the data is concentrated in the right tail 

of the histogram, illustrating that most cases require more than 72 hours to resupply 

100% of victim clusters, and it confirms the difficulty in resupplying 100% of victim 

clusters. 

 

Figure 33.  Histogram for Lower Bound on Time Taken to Resupply 100% 
of Victim Clusters (Second Phase Experiment). 
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Each design point is then summarized by its mean, and the histogram of these 

256 means, each of which is an estimate of the time taken to resupply 100% of victim 

clusters, is shown in Figure 34.  The results indicate a narrow range of outcomes, with 

a minimum mean time taken of 62.47 hours and a maximum mean time taken of 

72.00 hours.  

 

Figure 34.  Histogram for Mean Lower Bound on Time Taken to Resupply 100% 
of Victim Clusters (Second Phase Experiment). 

8. Fuel Consumed 

Similarly, by first computing the fuel consumed per victim cluster resupplied for 

each simulation run and then summarizing this value by its mean for each design point, 

the histogram of mean fuel consumed is shown in Figure 35.  The results indicate a wide 

range of outcomes, with a minimum of 3,687 gallons of fuel consumed and a maximum 

of 20,076 gallons of fuel consumed. 

 

Figure 35.  Histogram for Mean Fuel Consumed (Second Phase Experiment). 
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9. Fuel Consumed Per Victim Cluster Resupplied 

Similarly, by summarizing each design point by its mean, the histogram for the 

mean fuel consumed per victim cluster resupplied is shown in Figure 36.  The results also 

indicate a wide range of outcomes, with a minimum of 46 gallons of fuel consumed and a 

maximum of 245 gallons of fuel consumed per victim cluster resupplied. 

 

Figure 36.  Histogram for Mean Fuel Consumed per Victim Cluster Resupplied 
(Second Phase Experiment). 

10. Lower Bound for Fuel Consumed to Resupply 50% of Victim Clusters 

In Section A.5, it was seen that out of 25,600 simulation runs, there were 462 

cases where less than 50% of victim clusters were resupplied within 72 hours. For each 

these 462 cases, we calculate the amount of fuel that they consumed in 72 hours 

analytically using the formula presented in Chapter IV, Section B, and add it to the fuel 

consumed by the 25,138 cases where 50% of victim clusters were resupplied within 72 

hours. Each design point is then summarized by its mean, and the histogram for the mean 

fuel consumed to resupply 50% of victim clusters is shown in Figure 37.  The results 

indicate a wide range of outcomes, with a minimum mean fuel consumed of 1,360 

gallons and a maximum mean fuel consumed of 5,043 gallons to resupply 50% of victim 

clusters. 
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Figure 37.  Histogram for Mean Lower Bound Fuel Consumed to Resupply 50% 
of Victim Clusters (Second Phase Experiment). 

11. Lower Bound for Fuel Consumed to Resupply 75% of Victim Clusters 

In Section A.6, it was seen that out of 25,600 simulation runs, there were 7,746 

cases where less than 75% of victim clusters were resupplied within 72 hours. For each 

these 7,746 cases, we calculate the amount of fuel that they consumed in 72 hours 

analytically using the formula presented in Chapter IV, Section B, and add it to the fuel 

consumed by the 17,854 cases where 75% of victim clusters were resupplied within 72 

hours. Each design point is then summarized by its mean, and the histogram for the mean 

fuel consumed to resupply 75% of victim clusters is shown in Figure 38.  The results 

indicate a wide range of outcomes, with a minimum mean fuel consumed of 2,592 

gallons and a maximum mean fuel consumed of 15,818 gallons to resupply 75% of 

victim clusters. 

 

Figure 38.  Histogram for Mean Lower Bound Fuel Consumed to Resupply 75% 
of Victim Clusters (Second Phase Experiment). 
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12. Lower Bound for Fuel Consumed to Resupply 100% of Victim 
Clusters 

In Section A.7, it was seen that out of 25,600 simulation runs, there were 25,007 

cases where less than 100% of victim clusters were resupplied within 72 hours. For each 

these 25,007 cases, we calculate the amount of fuel that they consumed in 72 hours 

analytically using the formula presented in Chapter IV, Section B, and add it to the fuel 

consumed by the 593 cases where 100% of victim clusters were resupplied within 72 

hours. Each design point is then summarized by its mean, and the histogram for the mean 

fuel consumed to resupply 100% of victim clusters is shown in Figure 39.  The results 

indicate a wide range of outcomes, with a minimum mean fuel consumed of 3,687 

gallons and a maximum mean fuel consumed of 20,379 gallons to resupply 100% of 

victim clusters. 

 

Figure 39.  Histogram for Mean Lower Bound Fuel Consumed to Resupply 100% 
of Victim Clusters (Second Phase Experiment). 

B. ANALYSIS OF SECOND PHASE EXPERIMENT 

Partition tree models were used to investigate the effects of the input factors on 

the MOEs as identified in Chapter IV, Section B. Partition tree models are a 

“nonparametric approach to fitting a response to a set of data” (Kleijnen et al. 2005, 284), 

and are a relatively intuitive way of exploring the effect of input variables on a response 

variable. A partition tree model is constructed by splitting the simulation data recursively 

into groups with different means and lower standard deviations (branches) until a desired 

R2 value is achieved. The higher the R2 value, the more variability in the data that is 
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explained by the partition tree model, and thus the better the model fit. In the subsequent 

analysis, the partition tree models were constructed using average results across the 

replications for each design point.  

1. Throughput of Relief Supplies to Isolated Victims 

The first MOE to be investigated is the throughput of relief supplies to isolated 

victims, and a partition tree was constructed using the number of victim clusters 

resupplied as the response, as shown in Figure 40.  The findings reveal that shorter and 

faster DDT convoys that are able to communicate with one another are more effective 

toward the throughput of relief supplies to isolated victims. Interestingly, the first split 

was on the “Communications Devices” factor, and not the “Operational Plan” factor as in 

the first phase experiment. This shows that the screening efforts to remove dominant 

factors were effective for this MOE. Specifically, when the use of communication 

devices is able to increase the sensor range to more than 4,455 meters, the mean number 

of victim clusters resupplied is 84.79. This finding shows that the use of communications 

devices is crucial in passing on valuable information between DDT convoys searching for 

isolated victims; the farther the range of the sensor, the better.  

The second split divided the “Operational Plan” factor into operational plan 4 

against operational plans 1, 2, and 3. In this case, when operational plan 4 was utilized, 

the mean number of victims resupplied is 73.25. When operational plans 1, 2, and 3 were 

utilized, the mean number of victim clusters resupplied is 88.87. With reference to the 

DDT convoy length of the different operational plans shown in Table 14, this finding 

reveals that operational plans with shorter and faster convoys are more effective in 

resupplying isolated victims. This could be due to the fact that shorter convoys translate 

to a greater number of DDT agents exploring more areas of the map simultaneously; at 

the same time, they are also able to travel quicker to LDCs for reloading, hence 

minimizing the penalty of running out of relief supplies more frequently. 
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Figure 40.  Partition Tree for Number of Victim Clusters Resupplied 
(Second Phase Experiment). 

A second-order stepwise regression model for the number of victim clusters 

resupplied was constructed to explore the interactions between the factors, and the 

interaction profiles for the input factors that affect the number of victim clusters 

resupplied is shown in Figure 41.  On the interaction plot of “Fuel Efficiency” and 

“Trafficability,” we see that when trafficability is bad (0.5), an increase in fuel efficiency 

increases the number of victims resupplied. On the interaction plot of “Fuel Efficiency” 

and “Operational Plan,” we see that an increase in fuel efficiency is able to increase the 

number of victim clusters resupplied in operational plan 4, which is the case where the 

speed of the DDTs was the slowest. This demonstrates that fuel efficiency becomes a 

concern in situations where the trafficability of roads is bad or when the DDT convoys 

are slow; fuel efficiency does not have as much of an impact in situations where the 

trafficability of roads is good or when the DDT convoys are fast. The reader is reminded 

that fuel efficiency is not affected by the speed of the DDTs due to their relatively low 

speed; this was explained earlier in Chapter III, Section G.4.11. 
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Figure 41.  Interaction Profiles for Input Factors that Affect the Number of 
Victim Clusters Resupplied (Second Phase Experiment). 

2. Timeliness in Delivering Relief Supplies to Isolated Victims 

The second MOE to be investigated is the timeliness in delivering relief supplies 

to isolated victims. Three partition trees were constructed, using the lower bound time 

taken to resupply: (1) 50%, (2) 75%, and (3) 100% of victim clusters, respectively, as the 

responses. The effects summary table is shown in Table 15, with detailed explanation in 

Sections a, b, and c. 

 Effects Summary Table for Partition Trees for Lower Bound Time Taken Table 15.
to Resupply 50/75/100% of Victim Clusters (Second Phase Experiment). 

Input Factors 
Lower Bound for Time Taken to Resupply 

50% of Victims 75% of victims 100% of Victims
Operational Plan √ √ √ 
Reduce Idle Time - - - 
Fuel Efficiency - - - 
Communication Devices - √ √ 

R2 of Partition Tree 0.831 0.791 0.640 
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a. Lower Bound for Time Taken to Resupply 50% of Victim Clusters 

The “Operation Plan” factor had the greatest effect on the lower bound time taken 

to resupply 50% of victim clusters. As shown in the partition tree in Figure 42, the first 

split was on the “Operational Plan” factor. Subsequent splits in the partition tree were 

similar, splitting at the different operational plans. Specifically, operational plan 1 took 

the least amount of time at 11.72 hours, while operational plan 4 took the most amount of 

time at 39.82 hours. This shows that the “Operational Plan” factor strongly affects the 

time taken to resupply 50% of victim clusters. In particular, operational plans that utilize 

shorter and faster convoys were able to resupply 50% of victim clusters the quickest. 

 

Figure 42.  Partition Tree for Lower Bound Time Taken to Resupply 50% of 
Victim Clusters (Second Phase Experiment). 

b. Lower Bound for Time Taken to Resupply 75% of Victim Clusters 

Both “Operational Plan” and “Communication Devices” factors had a large effect 

on the lower bound time taken to resupply 75% of victim clusters. Similar to Section 

B.2.a, the first split divided the “Operational Plan” factor into operational plans 1 and 2 

against operational plans 3 and 4. The second split divided the “Communication Devices” 

factor for operational plans 1 and 2. These findings show that shorter and faster DDT 

convoys that are adept at communicating across long distances (≥ 4,675 meters) are able  
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to resupply 75% of victim clusters in the shortest amount of time at 23.62 hours. The 

partition tree for the time taken to resupply 75% of victim clusters is shown in Figure 43.  

 

Figure 43.  Partition Tree for Lower Bound Time Taken to Resupply 75% of 
Victim Clusters (Second Phase Experiment). 

c. Lower Bound for Time Taken to Resupply 100% of Victim Clusters 

Both “Operational Plan” and “Communication Devices” factors had a large effect 

on the lower bound time taken to resupply 100% of victim clusters. As shown in the 

partition tree in Figure 44, both the first and second splits were on the “Communication 

Device” factor. The third split was on the “Operational Plan” factor. These findings show 

that shorter and faster DDT convoys that are adept at communicating across long 

distances (≥ 8,518 meters) are able to resupply 100% of victim clusters quickest. 

However, the time taken to resupply 100% of victim clusters do not differ much between 

the different leaves of the partition tree, with the shortest amount of time at 68.23 hours, 

and the most amount of time at 72 hours. This shows that: (1) both “Operational Plan” 

and “Communication Devices” factors strongly affect the time taken to resupply 100% of 

victim clusters, and (2) a certain minimum time duration is required if 100% of victim 

clusters are to be resupplied. 
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Figure 44.  Partition Tree for Lower Bound Time Taken to Resupply 100% 
of Victim Clusters (Second Phase Experiment). 

3. Fuel Efficiency of Each Capability Instantiation 

The third MOE to be investigated is the fuel efficiency of each capability 

instantiation. Five partition trees were constructed, using: (1) fuel consumed, (2) fuel 

consumed per victim cluster resupplied, and the lower bound fuel consumed to resupply 

(3) 50%, (4) 75%, and (5) 100% of victim clusters, as the responses. The effects 

summary table for the lower bound fuel consumed to resupply 50/75/100% of victim 

clusters is shown in Table 16, with detailed explanation in Sections c, d, and e. 

 Effects Summary Table for Partition Trees for Lower Bound Fuel Consumed Table 16.
to Resupply 50/75/100% of Victim Clusters (Second Phase Experiment) 

Input Factors 
Lower Bound for Fuel Consumed to Resupply 

50% of Victims 75% of victims 100% of Victims
Operational Plan - √ √ 
Reduce Idle Time √ - - 
Fuel Efficiency √ √ √ 
Communication Devices √ √ - 

R2 of Partition Tree 0.61 0.77 0.87 
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a. Fuel Consumed 

Both “Operational Plan” and “Fuel Efficiency” factors have a large effect on the 

amount of fuel consumed. As shown in the partition tree in Figure 45, the first split is on 

the “Operational Plan” factor, and the second split is on the “Fuel Efficiency” factor. This 

finding shows that the shorter and faster DDT convoys (13,660 gallons) consumed 

approximately 2.3 times more fuel than longer and slower DDT convoys (5,903 gallons), 

presumably because collectively, they covered more distance and consumed fuel at a 

quicker rate. However, by improving on the fuel efficiency of the MTVRs (≥ 4.26), the 

shorter and faster DDT convoys can reduce their fuel consumption. 

 

Figure 45.  Partition Tree for Fuel Consumed (Second Phase Experiment). 

b. Fuel Consumed Per Victim Cluster Resupplied 

Similarly, both “Operational Plan” and “Fuel Efficiency” factors have a large effect 

on the amount of fuel consumed per victim cluster resupplied. As shown in the partition 

tree in Figure 46, the first split is on the “Operational Plan” factor, and the second and third 

splits are on the “Fuel Efficiency” factor. This finding shows that the shorter and faster 

DDT convoys (159 gallons) consumed approximately two times more fuel than longer and 

slower DDT convoys (81 gallons) per victim cluster resupplied. It was also observed that as 

a whole, longer and slower DDT convoys with worse fuel efficiencies (less than 3.93) 

consumed less fuel (101 gallons vs. 138 gallons) as compared to shorter and faster DDT 

convoys with better fuel efficiencies (≥ 4.28) per victim cluster resupplied.  
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Figure 46.  Partition Tree for Fuel Consumed Per Victim Cluster Resupplied 
(Second Phase Experiment). 

c. Lower Bound for Fuel Consumed to Resupply 50% of Victim Clusters 

The “Fuel Efficiency,” “Communication Devices,” and “Reduce Idle Time” 

factors have a large effect on the lower bound fuel consumed to resupply 50% of victim 

clusters. As shown in the partition tree in Error! Reference source not found., the first 

split is on the “Fuel Efficiency” factor, and the second and third splits are on the 

“Communication Devices” factor. This finding shows that fuel efficient MTVRs (≥ 4.31) 

that are able to communicate with one another over relatively long distances (≥ 3,824 

meters) and reduced idling time when resupplying victim clusters consume the least fuel 

(2,078 gallons), presumably because the DDT convoys do not have to travel 

unnecessarily searching for victim clusters to resupply them. On the other hand, DDT 

convoys that are only able to communicate with one another over short distances (lesser 

than 3,165 meters) consume the most fuel (3,387 gallons).  For less fuel efficient MTVRs 

(less than 4.31), the amount of fuel consumed to resupply 50% of victim clusters is 

affected by the noise factors “Trafficability” and “Concealment.” As the “Operational 

Plan” factor does not appear in this partition tree, it suggests that all four operational 

plans considered in this thesis were able to resupply 50% of victim clusters equally well. 
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Figure 47.  Partition Tree for Lower Bound Fuel Consumed to Resupply 50% of Victim Clusters (Second Phase Experiment)
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d. Lower Bound for Fuel Consumed to Resupply 75% of Victim Clusters 

The “Communication Devices,” “Fuel Efficiency,” and “Operational Plan” factors 

have the largest effect on the lower bound fuel consumed to resupply 75% of victim 

clusters. As shown in the partition tree in Figure 48, the first split was on the 

“Communication Devices” factor, while the second and third splits were on the “Fuel 

Efficiency” and “Operational Plan” factors respectively. The right hand of the partition 

tree suggests that when the DDT convoys are not able to communicate with one another 

over long distances (less than 4,729 meters), utilizing shorter and faster DDT convoys 

will lead to a greater amount of fuel consumed to resupply 75% of victim clusters, 

presumably because without effective communications, they are mostly operating as 

independent entities, driving around searching for victim clusters and consuming more 

fuel in the process. 

 

Figure 48.  Partition Tree for Lower Bound Fuel Consumed to Resupply 75% 
of Victim Clusters (Second Phase Experiment). 

e. Lower Bound for Fuel Consumed to Resupply 100% of Victim Clusters 

The “Operational Plan” and “Fuel Efficiency” factors have the largest effect on 

the lower bound fuel consumed to resupply 100% of victim clusters. As shown in the 

partition tree in Figure 49, the first split was on the “Operational Plan” factor, and the 

second split was on the “Fuel Efficiency” factor. Subsequent splits in the partition tree 
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were similar to the first two splits, alternating between the “Operational Plan” and “Fuel 

Efficiency” factors. The findings show that across the range, longer and slower DDT 

convoys consumed lesser fuel to resupply 100% of victim clusters as compared to shorter 

and faster DDT convoys. 

 

Figure 49.  Partition Tree for Lower Bound Fuel Consumed to Resupply 100% 
of Victim Clusters (Second Phase Experiment). 

4. Tradeoff Between Fuel Consumed and Timeliness in Delivering 
Supplies to Victim Clusters 

To explore the tradeoff between MOE 2—time taken to resupply victim clusters 

and MOE 3—fuel efficiency of each capability instantiation, the amount of fuel 

consumed to resupply: (1) 50%, (2) 75%, and (3) 100% of victim clusters was plotted 

against the time taken to resupply its corresponding percentage of victim clusters.  

a. Fuel Consumed vs. Time Taken to Resupply 50% of Victim Clusters 

In Figure 50, we see that most runs are able to resupply 50% of victim clusters 

within 72 hours., as there were not many censored runs which lie on the end of simulation 

reference line. In particular, we observe that when holding the lower bound on fuel 

constant at low levels (e.g., 5,000 gallons), the runs corresponding to operational plans 

that utilized shorter and faster DDT convoys were able to resupply 50% of victim clusters 
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the quickest, while the runs corresponding to operational plans that utilized longer and 

slower DDT convoys were slower at resupplying 50% of victim clusters. In addition, we 

notice at the top right area of the graph that there are instances where operational plans 

that utilized shorter and faster DDT convoys consumed more fuel than operational plans 

that utilized longer and slower DDT convoys  

 

Figure 50.  Graph for Fuel Consumed vs. Time Taken to Resupply 50% of 
Victim Clusters (Second Phase Experiment). 

b. Fuel Consumed vs. Time Taken to Resupply 75% of Victim Clusters 

In Figure 51, we see that there are more censored runs that lie on the end of 

simulation reference line, indicating that there are lesser runs that are able to resupply 

75% of victim clusters within 72 hours. In particular, we observe that most runs 

corresponding to operational plans that utilized shorter and faster DDT convoys were 

able to resupply 75% of victim clusters the quickest, but the runs corresponding to these 

operational plans also consumed more fuel, as shown by the different layers in the graph, 
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with operational plan 1 consuming the most fuel and operational plan 4 consuming the 

least fuel. 

 

Figure 51.  Graph for Fuel Consumed vs. Time Taken to Resupply 75% 
of Victim Clusters (Second Phase Experiment). 

c. Fuel Consumed vs. Time Taken to Resupply 100% of Victim Clusters 

In Figure 52, we see that there are many censored runs that lie on the end of 

simulation reference line, indicating that they are unable to resupply 100% of victim 

clusters within 72 hours. For the runs that are able to do so, we observe that runs 

corresponding to operational plans that utilize shorter and faster DDT convoys consume 

more fuel than runs corresponding to operational plans that utilize longer and slower 

DDT convoys, albeit that some of the runs in the former are able to resupply 100% of 

victim clusters quicker than the latter. Operational plan 4 was never observed to resupply 

100% of victim clusters within 72 hours, regardless of the values of the other factors. 
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Figure 52.  Graph for Fuel Consumed vs. Time Taken to Resupply 100% 
of Victim Clusters (Second Phase Experiment) 
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VI. CONCLUSIONS 

The aim of this thesis was to study the effect of several OE-focused enhancements 

in extending the operational reach of a MEU in a HADR mission. This chapter restates 

the research questions originally listed in Chapter I, Section F, and provides insights that 

directly answer the questions. 

A. ANALYTICAL INSIGHTS 

The research questions and their respective insights are presented here. 

1. What Is the Effectiveness of Current MEU Assets Supporting HADR 
Resupply Operations in Terms of Throughput of Resources? 

The research shows that current MEU assets are able to support HADR resupply 

operations, but with a varying degree of success depending on the specific operational 

plan utilized as well as the “noise” factors examined in this thesis. This is evident in the 

wide range of number of victims resupplied, which ranged from a minimum of 12 to a 

maximum of 100 (Figure 24. ). The effectiveness depends on the operational plan 

employed by the MEU commander and the use of communication devices between the 

DDT convoys. If the MEU commander is restricted to the four operational plans studied, 

he or she should utilize operational plans consisting of shorter and more numerous DDT 

convoys that are able to travel independently, and at higher speed. Since DDT convoys 

are able to operate independently from each other, the use of communication devices 

allows them to quickly develop an operational picture of the HADR “battlespace.” As a 

result, the DDT convoys are able to spend less time searching for isolated victims; rather, 

they are able to use the time saved to deliver relief supplies to a greater number of 

victims. 

2. How Do the Energy Requirements of Current MEU Assets 
Supporting HADR Resupply Operations Limit its Capability to 
Maximize Delivery of Resources to Disaster Areas? 

Not surprisingly, the research shows that the “Fuel Efficiency” factor has a strong 

influence on all the MOPs associated with the MOE of fuel efficiency of each capability 
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instantiation. From Chapter V, Section A.8, the approximate amount of fuel consumed by 

a fleet of 30 MTVRs conducting HADR resupply operations over three days ranged from 

3,687 gallons to 20,076 gallons. According to the Center of Naval Analyses, the daily 

fuel requirement for the MEU ground combat element (GCE) is 6,546 gallons based on 

assault requirements (Table 17); assault requirements are used because they are similar to 

the first 72 hours of the ground resupply effort studied in this thesis. Hence, the total 

amount of fuel that is allocated to the GCE for three days of operations is 19,638 gallons, 

and the fuel consumed by the HADR resupply operation represents 18.77% to 102.23% 

of the total three-day quota. It is likely that the energy requirement of the MTVRs 

conducting HADR resupply operations may hamper its capability to maximize delivery 

of resources to disaster areas, and MEU commanders may have to reallocate fuel 

designated for other elements, such as the air combat element (ACE) or the MEU service 

support group (MSSG) to support the HADR resupply operation. 

 Daily Fuel Requirement for MEU. Adapted from Webb (2006, II-52). Table 17.

 

In terms of fuel consumed per victim cluster resupplied, analysis indicates that 

longer convoys traveling at slower speed perform better than smaller convoys traveling at 

higher speed (i.e., longer convoys are able to resupply more victim clusters per unit fuel 

consumed). Should energy sources be limited, one possibility is to deploy longer and 

slower convoys for HADR resupply missions to conserve energy. Alternatively, the 

tradeoff analysis indicates that shorter and faster convoys can also be utilized, albeit for a 

shorter period of time. 



 95

3. How Do OE Considerations Influence the Resupply Options of a 
MEU Conducting HADR Resupply Operations? 

Generally, most of the OE-focused assets and policies tested via the MANA 

simulation had a positive effect on the MOEs, and should be considered for future 

implementation to extend operational reach. Although not an OE consideration, a general 

insight gleaned from the research indicates that the “Operational Plan” factor has a strong 

influence on the MOEs and MOPs as it was present in all of the partition tree models. 

Hence, MEU commanders are recommended to place more emphasis on the operational 

plans considered for employment in a HADR resupply mission, in order to ensure greater 

probability of mission success. 

Conversely, it was observed that the “Reduce Idle Time” factor only had a limited 

effect on the MOEs relative to the other factors. This may be because it only affects the 

situation when the DDT convoys are resupplying victims. The relatively short time span 

of 0.5 hours to resupply a victim cluster means that the “Reduce Idle Time” factor was 

not able to significantly affect any of the MOEs. Nonetheless, it directly saves a small 

amount of fuel. A suggested improvement is to allow the “Reduce Idle Time” factor to 

also affect the situation when the DDT convoys are being restocked at the LDC, or to 

insert a penalty for vehicle idling before moving out from a LDC to account for PCCs; 

these practices are prohibited but still commonly practiced in reality (Peters 2016).  

4. What OE-focused Assets and Policies Should a MEU Include in Its 
Resupply System to Improve Its Throughput of Resources to Disaster 
Areas? 

This research reveals that the “Fuel Efficiency” factor had a significant effect on 

MOE 3 (fuel efficiency of each capability instantiation). Hence, the OE-focused assets 

and policies that the MEU should include in its resupply system should be those that 

pertain to the “Fuel Efficiency” factor, such as: (1) employing trained drivers, (2) 

employing hybrid technologies, and (3) employing follower vehicle technologies. 
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B. LIMITATIONS 

A limitation of using MANA as the choice of simulation software in this thesis is 

that MANA is only able to have one “ammunition” counter to account for a variety of 

relief supplies. For scenarios that involve several resupply items, it would be better to 

consider other simulation software such as Pythagoras, which is able to account for four 

different types of supplies. In addition, MANA has no predefined function for the act of 

resupply, so certain workarounds had to be performed in order to implement the scenario 

in MANA.  

C. FOLLOW-ON WORK 

Due to security concerns, the MANA model was constructed using open source 

and unclassified material. Future work could improve upon the fidelity of the model by 

incorporating additional information obtained from the DOD, defense agencies and 

contractors, or other classified sources.  

Sources of information notwithstanding, the MANA model developed in this 

thesis could also be used to explore the implementation of breaking-edge capabilities and 

technologies in HADR operations to extend operational reach, such as foraging 

techniques, water purification capabilities, unmanned technologies, and solar power. By 

changing the terrain and background map, and adjusting for specific differences, the 

MANA model could also be adapted to explore other operational scenarios such as 

Operation UNIFIED RESPONSE and Operation SEA ANGEL II.    

Lastly, future experiments could explore variations to the “Operational Plan” 

factor, since it was identified as one of the most dominant factors. For example, the linear 

relationship between convoy size and speed can be relaxed to allow for shorter and 

slower convoys, as well as longer and faster convoys.  
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APPENDIX.  DDT PRE-PLANNED ROUTES 

This appendix contains the six pre-planned routes on which the MEU commander 

may choose to deploy the DDT convoys in this thesis (Figures 52 to 57). 

 

Figure 53.  Pre-planned Route 1. Adapted from Google Maps. 
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Figure 54.  Pre-planned Route 2. Adapted from Google Maps. 
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Figure 55.  Pre-planned Route 3. Adapted from Google Maps. 
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Figure 56.  Pre-planned Route 4. Adapted from Google Maps. 
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Figure 57.  Pre-planned Route 5. Adapted from Google Maps. 
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Figure 58.  Pre-planned Route 6. Adapted from Google Maps. 
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